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Introduction

Consider the polynomial ring k[x0, . . . , xn] in n variables over some field k. An old question in
mathematics asks to find the common zeroes of some given polynomials f1, . . . , fr ∈ k[x0, . . . , xn]
in some field k (or in some field extension of k). For example, find the zeroes of the polynomial

x2 + y2 − z2 ∈ R[x, y, z]

in R. For fixed z, the zeroes of the polynomial are the points on the circle centered at the origin
with radius z in R2, i.e. are parametrized by z ∈ R and ϕ ∈ [0, 2π) in the following way:

x = z sinϕ, y = z cosϕ, and z = z.

This answers the question for R, but it does not generalize to other fields. So instead we want to
find a parametrization by rational functions, i.e. by fractions of polynomials. It is well-known
that for any field k of characteristic different from 2 the zeroes of the polynomial

x2 + y2 − z2 ∈ k[x, y, z]

are of the form

x = 2st, y = s2 − t2, and z = s2 + t2

with s, t ∈ k.

From the viewpoint of algebraic geometry this observation can be rephrased as follows: The
(smooth) projective curve

Q := {x2 + y2 − z2 = 0} ⊂ P2
k

is rational which means that Q is isomorphic to the one-dimensional projective space P1
k. More

generally, the question

”Parametrize the common zeroes of a given system of polynomials by rational functions.”

can be rephrased to

”Is a given (smooth) projective variety rational?”.

In dimension one and two there are explicit criteria answering this question: An irreducible
curve is rational if and only if its geometric genus is zero. A smooth, projective surface is
rational if and only if its irregularity and its second plurigenus vanish (over the complex numbers
this is known as Castelnuovo’s Rationality theorem). In higher dimensions there is currently
no complete answer to the above question, even in the case of (Fano) hypersurfaces or more
generally complete intersections in projective space. For Fano hypersurfaces some progress was
made over the years, mostly over the complex numbers in [IM71; CG72; Puh87; Kol95; Puh98;
deF13; deF16].

1



2 CHAPTER 1. INTRODUCTION

Recently, a new strategy to tackle the problem for Fano hypersurfaces and complete intersec-
tion was developed using the observation that (retract) rational varieties admit a decomposition
of the diagonal, i.e. the diagonal point δX ∈ Xk(X) is rationally equivalent to the base change
zk(X) of some k-rational point z ∈ X. Voisin ([Voi15]) introduced a cycle-theoretic degeneration
technique: For a variety X which degenerates to a mildly singular variety Y , she disproved
(retract) rationality for X by showing that Y does not admit a decomposition of the diagonal.
Voisin’s approach was generalized and refined in [CTP16; Sch19a]. Totaro used this technique
in [Tot16] to improve Kollár’s bound on very general hypersurfaces in all dimensions ([Kol95]).
Moreover, this approach was successfully used to construct new examples by [HPT18] and to
find a logarithmic bound for very general hypersurfaces in arbitrary dimension [Sch19b].

Nicaise and Shinder ([NS19]) introduced a motivic obstruction to stable rationality in charac-
teristic 0 by using the weak factorization theorem. They consider the free abelian group Z[SBk]
generated by stably birational equivalence classes of smooth projective k-varieties and showed
stably irrationality for varieties admitting a degeneration to a simple normal crossing variety
Y =

⋃
i∈I

Yi with

[
PdimY
k

]
+
∑

∅̸=J⊂I

(−1)|J |

⋂
j∈J

Yj

× P|J |−1
k

 ̸= 0 ∈ Z[SBk].

Kontsevich and Tschinkel [KT19] proved the same statement for irrationality instead of stably
irrationality after replacing Z[SBk] by the free abelian group Z[Bir(k)], which is generated by
birational equivalence classes of smooth projective k-varieties. Using this obstruction Nicaise
and Ottem [NO22] found a new example of a stably irrational Fano hypersurface, namely very
general quartic fivefolds, and some complete intersections, e.g. very general (3, 3) complete
intersections in P7.

Recently, Pavic and Schreieder [PS21] introduced a cycle-theoretic obstruction which uses
also degenerations to simple normal crossing varieties. Their obstruction works also in positive
characteristic and can be seen as a generalization of the motivic obstruction. They were able to
disprove retract rationality for a very general quartic fivefold by using a similar decomposition
as [NO22].

In this thesis we will give another application of the method of [PS21] by showing that a
very general (3, 3) complete intersection is not retract rational.

Theorem 1.1. Let k be an uncountable field of characteristic different from 2. A very general
(3, 3) complete intersection in P7

k does not admit a decomposition of the diagonal, in particular
is not retract rational.

Even the rationality of (3, 3) complete intersections was previously open in positive charac-
teristic. Similar to the quartic fivefold example by [PS21], we will use a degeneration which is
inspired by the degeneration of [NO22]. The key input for the obstruction to rationality is the
example of a quadric surface bundle by [HPT18].



Preliminaries

Conventions. A variety is a separated, integral scheme of finite type over a field k. We denote
the function field of a k-variety X by k(X). For a separated scheme X over a ring R and a ring
extension A/R we write XA := X ×R A := X ×SpecR SpecA for the base change.

Let X be a variety or more generally an algebraic scheme over a field k, i.e. a separated
scheme of finite type over k. Then we denote the free abelian group of algebraic l-cycles by Zl(X)
and the Chow group of l-cycles by CHl(X), i.e. Zl(X) modulo rational equivalence.

A very general point of an irreducible separated scheme is a closed point outside a countable
union of proper closed subsets.

Let X be a variety over an algebraically closed field k. An alteration of X is a proper,
generically finite, and surjective morphism τ : X ′ → X such that X ′ is smooth over k. The
existence of alterations in any characteristic was shown by de Jong [deJ96]. By work of Gabber,
see e.g. [IT14], the degree of the alteration can be choosen to be coprime to any prime not
dividing the characteristic of the field.

2.1 Retract rationality and decomposition of the diagonal

Recall that two varieties over some field k are birational if they contain isomorphic Zariski-open,
dense subsets. A variety is called rational if it is birational to the projective space Pnk where n
is the dimension of the variety. We call a variety X stably rational if X × Pmk is rational for
some m ≥ 0. Morover, a variety X is retract rational if there is an integer N ∈ Z≥0 and rational
maps f : X 99K PNk and g : PNk 99K X such that g ◦ f is defined and coincides with the identity
idX as a rational map. We call a variety X unirational if there exists a dominant rational map
PNk 99K X for some N ≥ 0. The following relations between these notions are well-known.

Lemma 2.1. Let X be a variety over some field k. Then

X is rational =⇒ X is stably rational =⇒ X is retract rational =⇒ X is unirational.

Proof. The first implication is obvious. Let X be stably rational, i.e. there exists n,N ∈ Z≥0

such that
φ : X ×k Pnk

∼
99K PNk

is a birational map. Let ι : X = X ×k {pt} ↪→ X ×k Pnk be a section of the projection

pr1 : X ×k Pnk −→ X

onto the first factor and define f := φ ◦ ι and g := pr1 ◦φ−1. Then f and g are rational maps
such that the composition g ◦ f is defined and coincides with the identity, i.e. X is retract
rational. The last implication follows immediately from the definitions.

The first and last implication are known to be strict by [BCTSSD85] and [AM72], respec-
tively. Whereas it is currently unknown whether the second implication is strict.
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4 CHAPTER 2. PRELIMINARIES

Definition 2.2. Let X be a variety over a field k and let ∆X ⊂ X×kX be the diagonal. Pulling
back ∆X via the natural morphism Xk(X) → X ×k X yields a zero-cycle δX ∈ CH0(Xk(X)). We
say that X admits a decomposition of the diagonal if

δX = zk(X) ∈ CH0(Xk(X))

for some zero-cycle z ∈ CH0(X).

There is an equivalent definition of the decomposition of the diagonal which also works for
algebraic schemes and is therefore sometimes preferred.

Lemma 2.3 ([Sch21, Lemma 7.3]). A variety X over some field k admits a decomposition of
the diagonal if and only if there exists a zero-cycle z ∈ Z0(X) and a cycle ZX ∈ Z0(X ×k X)
which does not dominate the first factor such that

[∆X ] = [X ×k z] + [ZX ] ∈ CHn(X ×k X), (2.1)

where ∆X ⊂ X ×k X denotes the diagonal and n = dimX.

Proof. We recall first the well-known result

CH0(Xk(X)) ∼= lim−→
U ̸=∅

CHn(U ×k X). (2.2)

For a closed point z ∈ Xk(X) the closure of the image under the natural morphism Xk(X) →
U ×kX defines an element in CHn(U ×kX) by taking the associated cycle of the n-dimensional
subvariety. Extending this map Z-linearly, we obtain a map

Z0(Xk(X)) −→ CHn(U ×k X). (2.3)

Any one-dimensional subvariety L in Xk(X) give rise to an (n + 1)-dimensional subvariety in

U ×k X by taking the closure L of the image under the natural morphism Xk(X) → U ×k X.

Moreover, any rational function on L can be viewed also as a rational function on L. Thus we
see that the map (2.3) factors through rational equivalence, i.e. for every open subset U ⊂ X
there exists a map

ρU : CH0(Xk(X)) −→ CHn(U ×k X).

Since the map is given by taking the closure of the image under the natural map and since
the pullback along flat morphism of the form V ×k X → U ×k X defines a natural restriction
morphism CHn(V ×kX) → CHn(U×kX), the homomorphisms ρU give rise to a homomorphism

ρ : CH0(Xk(X)) −→ lim−→
U ̸=∅

CHn(U ×k X).

To show (2.2) it suffices to prove that ρ is an isomorphism. Since any n-dimensional subvariety
S of U ×k X, which represents a non-trivial cycle in

lim−→
U ̸=∅

CHn(U ×k X),

maps dominantly via the projection onto the first factor, the variety S can be restricted to the
generic fibre of the projection U ×k X → U . In other words the preimage under the natural
map Xk(X) → U ×k X exists and is zero-dimensional. Hence, ρ is surjective.
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The injectivity of ρ follows from the observation that any (n+1)-dimensional variety of some
U ×k X, which maps dominantly via the first projection, can also be restricted to the generic
fibre, i.e. give rise to a one-dimensional variety in Xk(X).

Let us come back to the proof of the lemma. Assume there exists a decomposition as in
(2.1). Since ρ is an isomorphism,

δX = ρ−1([∆X ]) = ρ−1([X ×k z]) + ρ−1([ZX ]) = [zk(X)] ∈ CH0(Xk(X)).

as ZX ∈ X ×k X does not dominate the first factor. Hence, X admits a decomposition of the
diagonal as defined in Definition 2.2.

Assume now that X admits a decomposition of the diagonal as in Definition 2.2. By (2.2)
there exists some open subset U ⊂ X such that

i∗[∆X ] = ρU (δX) = ρU ([zk(X)]) = [U ×k z] ∈ CHn(U ×k X),

where i : U ×k X ↪→ X ×k X is the base change of the open embedding U ↪→ X. Using the
localization exact sequence [Ful98, Proposition 1.8] we get that

[∆X ] = [X ×k z] + [ZX ] ∈ CHn(X ×k X),

where ZX is a cycle which does not dominate the first factor.

As already mentioned in the introduction, the degeneration methods use the observation
that (retract) rational varieties admit a decomposition of the diagonal, see e.g. [Sch21, Lemma
7.5]:

Lemma 2.4. A retract rational variety over a field k admits a decomposition of the diagonal.

Proof. Let f : X 99K PNk and g : PNk 99K X be rational maps as in the definition of retract
rationality. Let Γf ⊂ X × PNk and Γg ⊂ PNk ×X denote the closure of the graphs of f and g,
respectively. After replacing X by a projective model, we may assume that X is proper. Up to
replacing X by Γf , we may also assume that f is a morphism which is automatically proper as
X is proper. Let K = k(X) be the function field of X. Then, we obtain a well-defined morphism

f∗ : CH0(XK) −→ CH0(PNK).

The projection pr2 : XK ×K PnK → PnK onto the second factor is a flat morphism, i.e. there is a
well-defined flat pull-back map

pr∗2 : CH0(PNK) −→ CHn(XK ×K PNK).

Since PNK is smooth, the closed embedding Γf,K ↪→ XK ×K PNK is a regular embedding and we
can define the refined Gysin homomorphism (see [Ful98, Definition 8.1.2])

CHn(XK ×K PnK) −→ CH0(Γf,K).

Combining these two morphisms with the pushforward via the natural morphism pr1 : Γf,K →
XK we obtain a morphism

g⋆ : CH0(PNK) −→ CH0(XK).

We claim that g⋆ ◦ f∗ = idCH0(XK). It suffices to check this equality for every closed point
z ∈ XK . By definition of the Gysin homomorphism

g⋆f∗[z] = g⋆[f(z)] = pr1,∗ ([XK ×K f(z)] · [Γf,K ]) = [z],
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because g ◦ f = id. Furthermore, CH0(PNK) ∼= Z, i.e. f∗δX = [zK ] for some closed point z ∈ Pnk
because δX has degree 1. We can choose even z such that g is defined in z. Combining all the
results yields

δX = g⋆ (f∗δX) = g⋆[zK ] = [(g∗z)K ] ∈ CH0(XK).

That concludes the proof of the lemma.

We also introduce the related notion of universally trivial Chow group of zero-cycles.

Definition 2.5. Let X be a proper variety over a field k. We say that X has universally trivial
Chow group of zero-cycles if for any field extension F/k, the degree map

deg : CH0(XF ) −→ Z

is an isomorphism.

From the definition it is obvious that if X has universally trivial Chow group of zero-cycles,
then X admits a decomposition of the diagonal. The converse is also true for geometrically
integral and smooth varieties.

Proposition 2.6 ([CTP16, Proposition 1.4]). Let X be a geometrically integral and smooth
variety over a field k. Then X has universally trivial Chow group of zero-cycles if and only if
X admits a decomposition of the diagonal.

2.2 Chow-theoretic obstruction to (retract) rationality

In this section we recall the constructions in [PS21, Section 3]. To this end let R be a discrete
valuation ring with residue field k and fraction field K.

Definition 2.7. (1) A proper flat R-scheme X → SpecR is called strictly semi-stable, if the
special fiber Y := X ×R k is a geometrically reduced simple normal crossing divisor on
X , i.e. the components of Y are smooth Cartier divisors on X and the intersections of r
different components is either empty or smooth and of codimension r.

(2) Let Y =
m⋃
i=1

Yi be the irreducible components of the special fiber Y . The variety Y is called

a chain of Cartier divisors if additionally Yi−1∩Yi and Yi∩Yi+1 are irreducible and disjoint
in Yi for 1 < i < m and all other intersection are empty.

Remark 2.8. If m = 2, the last condition says that the intersection Y1 ∩ Y2 is irreducible.

Definition 2.9. We use the same notations as above. Assume that X → SpecR is a strictly
semi-stable R-scheme with special fiber Y . (In particular we do not assume that Y is a chain
of Cartier divisors.) Denote the natural inclusion by ι : Y → X and ιi : Yi → X for 1 ≤ i ≤ m.
Then we define for every i ∈ {1, . . . ,m}

ΦX ,Yi := ι∗i ◦ ι∗ : CH1(Y ) −→ CH0(Yi).

The obstruction map is the sum of all the homomorphisms

ΦX :=
m∑
i=1

ΦX ,Yi =
m∑
i=1

ι∗i ◦ ι∗ : CH1(Y ) −→
m⊕
i=1

CH0(Yi). (2.4)
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Remark 2.10. Notet that the pull-back maps ι∗i exist and are well-defined by [Ful98, Section
2.6] because each Yi ⊂ X is Cartier.

Although the involved Chow groups depend only on Y , the obstruction map might a priori
depend on the choice of the strictly semi-stable model. We recall the observation made by [PS21]
that the obstruction map does only depend on the special fiber Y , and not on the total space

X . To this end let Y =
m⋃
i=1

Yi be the irreducible components of the special fiber. Denote the

natural inclusions by
ιi : Yi ↪−→ Y, ιi,j : Yi,j ↪−→ Yj ,

where Yi,j := Yi ∩ Yj is the scheme-theoretic intersection of Yi and Yj for i, j ∈ {1, . . . ,m}
different. As Y is a simple normal crossing divisor, ιi,j are regular embedding of codimension
1. Thus, there exist well-defined homomorphisms ι∗i,j : CH1(Yj) → CH0(Yi,j), see e.g. [Ful98,
Example 5.2.1]. For γj ∈ CH1(Yj) we write γj |Yi,j := ι∗i,jγj .

Lemma 2.11. Using the observations and notations made above, any γj ∈ CH1(Yj) satisfies

ΦX ,Yi((ιj)∗γj) =

(ιj,i)∗(γj |Yi,j ) ∈ CH0(Yi) for j ̸= i,

−
∑
k ̸=j

((ιk,i)∗(γj |Yk,j )) ∈ CH0(Yi) for j = i.

In particular, for γ =
m∑
k=1

(ιk)∗ γk ∈ CH1(Y ) and i ∈ {1, . . . ,m}:

ΦX ,Yi(γ) =
∑
j ̸=i

(ιj,i)∗ γj |Yi,j −
∑
j ̸=i

(ιj,i)∗ γi|Yj,i . (2.5)

Proof. The case i ̸= j follows from [Ful98, Theorem 6.2 (a)] applied to the fiber squares

Yi Yi

Y X

id

ιi ιi

ι

and

Yi,j Yj

Yi Y,

ιj,i

ιi,j ιj

ιi

i.e. for γj ∈ CH1(Yj):

ι∗i ι∗(ιj)∗γj = id∗ ι
∗
i (ιj)∗γj = ι∗i (ιj)∗γj = (ιi,j)∗ι

∗
j,iγj .

The second case follows directly from this by noting that [Y ] =
n∑
k=1

[Yk] = div(t) ⊂ X , i.e.

[Yi] = −
∑
k ̸=i

[Yk] ∈ PicX .

This finishes the proof of the lemma.

Remark 2.12. The homomorphism

m∑
i=1

(ιi)∗ :

m⊕
i=1

CH1(Yi) −↠ CH1(Y )

is obviously surjective as any codimension one subvariety of Y is contained in at least one
irreducible component. The map is in general not injective as one-cycles in the intersection of
two irreducible components have (at least) two different preimages. But we see from (2.4) that the

obstruction map does not depend on the choice of the ”decomposition” γ =
m∑
k=1

(ιk)∗ γk ∈ CH1(Y ).
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The main theorem in [PS21] uses two observations made by Pavic and Schreieder. These are
written down in the following lemma.

Lemma 2.13 ([PS21, Section 3.2]). Let X → SpecR be a strictly semi-stable model and let ΦX
be defined as in (2.4).

(a) If γ ∈ CH1(Y ) is a one-cycle on Y , then deg (ΦX (γ)) = 0.

(b) Let A/R be an unramified extension of discrete valuation rings, i.e. R → A is injective
and local with mR ·A = mA, then XA := X ×R A is a strictly semi-stable A-scheme.

Proof. We start proving the first item. Let Y =
m⋃
i=1

Yi be the irreducible components of the

special fiber Y of X → SpecR and let γ =
m∑
k=1

γk ∈ CH1(Y ) be a ”decomposition” with

γk ∈ CH1(Yk) for 1 ≤ k ≤ m. Using the concrete description of the obstruction map in (2.5),
we find by rearranging the summation that

ΦX (γ) =
m∑
i=1

∑
j ̸=i

(ιj,i)∗ γj |Yi,j −
∑
j ̸=i

(ιj,i)∗ γi|Yj,i


=

 m∑
j=1

∑
i ̸=j

(ιj,i)∗ γj |Yi,j

−

 m∑
i=1

∑
j ̸=i

(ιj,i)∗ γi|Yj,i


=

m∑
i=1

∑
i ̸=j

(
(ιi,j)∗ γi|Yj,i − (ιj,i)∗ γi|Yj,i

)
∈

m⊕
k=1

CH0(Yk).

Hence,

deg ΦX (γ) = deg

 m∑
i=1

∑
i ̸=j

(
(ιi,j)∗ γi|Yj,i − (ιj,i)∗ γi|Yj,i

)
=

m∑
i=1

∑
i ̸=j

(
deg

(
γi|Yj,i)

)
− deg

(
γi|Yj,i

))
= 0.

This proves item (a). Let us prove (b) now. Let X → SpecR be strictly semi-stable, i.e. the
morphism X → SpecR is proper and flat and the components of the special fiber are smooth
Cartier divisors such that the intersection of r different components is either empty or smooth
of codimension r. As properness and flatness are preserved under base change, XA → SpecA is
proper and flat. Let L denote the residue field of A. Since A/R is unramified,

L = A/mA = A/mRA = k ⊗R A,

where mR and mA denote the unique maximal ideals of R and A, respectively. Hence, the
special fiber of XA → SpecA is the base change of the special fibre Y of X → SpecR, i.e.

XA ×A L = Y ×R A = YL.

Thus, we immediately conclude that XA is again strictly semi-stable as wanted which proves
item (b).
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Rephrasing these two observations we conclude that the image of the obstruction map is
contained in the kernel of the degree map, i.e.

ΦX : CH1(Y ) −→ Ker

(
deg :

m⊕
i=1

CH0(Yi) −→ Z

)
,

and that for any unramified extension A/R of discrete valuation rings there exists a homomor-
phism

ΦXA
: CH1(YL) −→ Ker

(
deg :

m⊕
i=1

CH0(Yi,L) −→ Z

)
where L is the residue field of A. Studying these maps can give an obstruction to the decompo-
sition of the diagonal of the geometric generic fiber.

Theorem 2.14 ([PS21, Theorem 4.1]). Let R be a discrete valuation ring with algebraically
closed residue field and let X → SpecR be a strictly semi-stable projective R-scheme whose
special fiber Y =

⋃
i∈I

Yi is a chain of Cartier divisors. Assume that the geometric generic fibre

of X → SpecR has a decomposition of the diagonal. Then for any unramified extension A/R of
discrete valuation rings, with induced extension L/k of residue fields, the natural map

ΦXA
: CH1(YL)/2 −→ Ker

(⊕
i∈I

CH0(Yi,L)/2
deg−→ Z/2

)
is surjective.

2.3 Degenerations and Specializations

We will often use degenerations of varieties, or more generally reduced algebraic schemes, e.g.
to show that certain varieties are smooth (see Remark 3.5). Therefore we introduce this notion
here by following [Sch19a, Section 2.2]. Let X and Y be reduced algebraic schemes over a field L
and an algebraically closed field k, respectively. We say that X degenerates (or specializes) to Y
if there exists a discrete valuation ring R with residue field k and fraction field K together with
an injection of field K → L such that the following holds: There exists a proper, flat morphism

X −→ SpecR

of finite type such that Y is isomorphic its special fibre Xk and X is isomorphic to the base
change XL = XK × L of the generic fibre.

The following lemma shows that in “nice” families X → B a very general fibre specialize to
the fibre over some fixed closed point b ∈ B, see e.g. [Sch19a, Lemma 8].

Lemma 2.15. Let f : X → B be a surjective, proper, and flat morphism of reduced, quasi-
projective algebraic schemes over an algebraically closed field k and assume further that B is
integral. Let 0 ∈ B be a closed point. Then a very general fibre specialize to the fibre X0 over
the point 0 in the above sense.

Proof. A very general fibre of f is abstractly isomorphic to the geometric generic fibre of f , see
e.g. [Via13, Lemma 2.1]. Hence, it suffices to prove that one fibre which is very general specializes
to X0, i.e. we can reduce to the case where B is an (integral) curve. Since normalization
commutes with localization, we can assume furthermore that B is smooth by passing to the
normalization. Since the local ring OB,0 is an integrally closed Noetherian local ring, it is a
discrete valuation ring and the lemma follows.
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Let us also mention the following result by Colliot-Thélène and Pirutka.

Theorem 2.16 ([CTP16, Theorem 1.12]). Let A be a discrete valuation ring with residue field
k and fraction field K. Let X be a proper and flat A-scheme with geometrically integral fibers.
Assume furthermore that the special fibre Xk and generic fibre XK of X → SpecA are smooth.
Then each one implies the next one:

(i) XK is retract rational.

(ii) XK admits a decomposition of the diagonal.

(iii) Xk admits a decomposition of the diagonal.

Remark 2.17. If k is algebraically closed, then the same statement holds for the geometric
generic fibre instead of the generic fibre, see [CTP16, Theorem 1.14].

2.4 Unramified cohomology and Merkurjev pairing

We follow mainly [Sch21] for this quick overview. For a scheme X and a sheaf F in the étale
topology, we denote by H i(X,F) the i-th étale cohomology group of F . If X = SpecA is
the spectrum of a ring A, we write H i(A,F) := H i(SpecA,F). We solely use the constant
(étale) sheaf Z/2. The theory of unramified cohomology and Merkurjev pairing works also in
more generality, e.g. where one considers the sheaf of m-th roots of unity µm and its tensor
powers. As we work over fields of characteristic different from 2, the sheaf µ2 is isomorphic to
the constant sheaf Z/2 and thus also its tensor products, i.e. we work in a special case of this
more general theory.

For the rest of this section k denotes always a field of characteristic different from 2 and K/k
denotes a finitely generated field extension. We start with some preliminary results on étale
cohomology:

By Hilbert 90, H1(K,Gm) = Pic(SpecK) = 0. Thus, the long exact sequence in étale
cohomology associated to the Kummer exact sequence

0 −→ µ2 −→ Gm −→ Gm → 0

yields that
H1(K,Z/2) = H1(K,µ2) = K∗

/(K∗)2,

where the first equality comes from the fact that µ2 ∼= Z/2 as étale sheaves. Hence, for every
element a ∈ K∗ its residue class a ∈ K∗/(K∗)2 defines an étale cohomology class

(a) ∈ H1(K,Z/2).

Using the cup product in étale cohomology (see e.g. [Sch21, Section 2.4]) any a1, . . . , an ∈ K∗

give rise to a class
(a1, . . . , an) := (a1) ∪ · · · ∪ (an) ∈ Hn(K,Z/2).

These classes are closely related to quadrics as the following discussion (see e.g. [Sch19b, Section

2.4]) shows: For c0, . . . , cr ∈ K∗ we denote by ⟨c0, c1, . . . , cr⟩ the quadratic form q =
r∑
i=0

ciz
2
i

over K. The tensor product of two quadratic form q and q′ is denoted by q ⊗ q′. A quadratic
form over K is called a Pfister form if it is isomorphic to

⟨1,−a1⟩ ⊗ ⟨1,−a2⟩ ⊗ · · · ⊗ ⟨1,−an⟩
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where ai ∈ K∗ for i = 1, . . . , n. We denote this Pfister form by ⟨⟨a1, . . . , an⟩⟩. The following
result due to the work of many people, including Arason, Elman, Lam, Knebusch and Voevodsky,
shows the above mentioned connection to étale cohomology of fields, cf. [Sch19b, Theorem 2.2]

Theorem 2.18 ([EL72, Main Theorem 3.2] and [Voe03]). Let K be a field of characteric different
from 2 and let a1, . . . , an ∈ K∗. The Pfister form ⟨⟨a1, . . . , an⟩⟩ is isotropic if and only if
(a1, . . . , an) = 0 ∈ Hn(K,Z/2).

The long exact sequence of pairs [SGA4.2, p. V.6.5.4] together with Gabber’s proof of
Grothendieck’s purity conjecture implies the existence of a Gysin sequence, cf. [Sch21, The-
orem 2.3].

Theorem 2.19. Let V be a regular Noetherian scheme over k with a regular closed subscheme
Z ⊂ V of pure codimension c and complement U := V \ Z. Then there exists a long exact
sequence

· · · −→ H i(V,Z/2) −→ H i(U,Z/2) ∂−→ H i+1−2c(Z,Z/2) −→ H i+1(V,Z/2) −→ . . . .

Next, we turn to the definition of unramified cohomology groups which are certain subgroups
in étale cohomology. Their definition, cf. [Sch21, Definition 4.1], requires so called geometric
valuation.

Definition 2.20. Let K/k be a finitely generated field extension. A geometric valuation ν on
K over k is a discrete valuation on K, which is trivial on k, such that the transcendence degree
of the residue field κν over k is given by

trdegk(κν) = trdegk(K)− 1.

We denote the discrete valuation ring associated to the discrete valuation ν by Aν .

Remark 2.21. Every geometric valuation ν is given by the order of a prime divisor E on some
normal k-variety Y with k(Y ) ∼= K, i.e. ν(ϕ) = ordE(ϕ) for every ϕ ∈ K∗ (see e.g. [Mer08,
Proposition 1.7]).

Definition 2.22 ([Mer08]). The i-th unramified cohomology group of K over k with coefficients
in Z/2 is the subgroup

H i
nr(K/k,Z/2) ⊂ H i(K,Z/2),

that consists of all elements α ∈ H i(K,Z/2) such that for any geometric valuation ν on K over
k, we have ∂να = 0 where

−∂ν : H i(K,Z/2) −→ H i−1(k,Z/2)

is the boundary map of the Gysin sequence (Theorem 2.19) for SpecK = SpecAν \ Spec k.

Remark 2.23. We use the definition given by Merkurjev [Mer08, Section 2.2] which differs
slightly from the original definition by Colliot-Thélène and Ojanguren [CTO89, Definition 1.1.1].
The latter requires that ∂να vanishes for any discrete valuation of K which is trivial on k. The
two definitions agree when K = k(X) is the function field of a smooth projective variety X over
k, see e.g. [Sch21, Proposition 4.10 and Remark 4.4].

Let us collect some results about unramified cohomology. We start with the functioriality
which is induced by the functoriality of étale cohomology.
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Proposition 2.24 ([Sch21, Proposition 4.7]). Let K ′/K/k be finitely generated field extensions
and let f : SpecK ′ → SpecK be the natural morphism.

(a) Then f∗ : H i(K,Z/2) → H i(K ′,Z/2) induces a pullback map

f∗ : H i
nr(K/k,Z/2) −→ H i

nr(K
′/k,Z/2).

(b) If f is finite, then f∗ : H
i(K ′,Z/2) → H i(K,Z/2) induces a pushforward map

f∗ : H
i
nr(K

′/k,Z/2) −→ H i
nr(K/k,Z/2)

with f∗ ◦ f∗ = deg(f) · id.

The functioriality of unramified cohomology allows us to define the base extension of some
unramified cohomology class.

Definition 2.25. Let K/k be a finitely generated field extension and X be a variety over k.
Let α ∈ H i

nr(k(X)/k,Z/2) be an unramified cohomology class. Moreover, let ψ : SpecK(XK) →
Spec k(X) be the natural morphism corresponding to the inclusion k(X) ↪→ K(XK) of fields.
Then, we define the class

αK := ψ∗α ∈ H i(K(XK)/k,Z/2) ⊂ H i(K(XK)/K,Z/2).

Bloch-Ogus’ proof [BO74] of the Gersten conjecture for étale cohomology yields the following
theorem, known as injectivity and codimension 1 purity for étale cohomology [CT95, Theorem
3.8.1 and Theorem 3.8.2].

Theorem 2.26 ([Sch21, Theorem 3.6]). Let X be a variety over a field k of characteristic
different from 2 and let x be a point in the smooth locus of X. Then the following holds:

(a) The natural morphism

H i(OX,x,Z/2) −→ H i(k(X),Z/2) (2.6)

is injective.

(b) A class α ∈ H i(k(X),Z/2) lies in the image of (2.6) if and only if α has trivial residue
along each prime divisor on X that passes through x.

Using these results we are able to define a well-defined restriction map for unramified coho-
mology classes. Let X be a proper and smooth k-variety and let α ∈ H i

nr(k(X)/k,Z/2) be an
unramified cohomology class. Moreover, let x ∈ X be a point. By part (b) of Theorem 2.26 we
know that α admits a lift α̃ ∈ H i(OX,x,Z/2) and this lift is unique by part (a) of Theorem 2.26.
Thus, we may define the restriction α|x of α to x as the image of α̃ via the natural morphism

H i(OX,x,Z/2) −→ H i(κ(x),Z/2).

One can show that this element is in fact again unramified.

Proposition 2.27 ([Sch21, Proposition 4.8]). Let X be a proper, smooth variety over k and let
α ∈ H i

nr(k(X)/k,Z/2). Then for any x ∈ X there exists a well-defined restriction

α|x ∈ H i
nr(κ(x),Z/2),

where κ(x) is the residue field of the (not necessarily closed) point x.
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Corollary 2.28 ([Sch21, Corollary 4.9]). Let f : X → Y be a morphism between proper varieties
and assume additionally that Y is smooth. Then, there is a well-defined pullback map

f∗ : H i
nr(k(Y )/k,Z/2) −→ H i

nr(k(X)/k,Z/2)

which is given by restricting an unramified class α ∈ H i
nr(k(Y )/k,Z/2) to the generic point of

the image of f and pulling it back to k(X).

Now we are able to introduce the Merkurjev pairing which allows us to find a cohomological
obstruction to rationality, see Proposition 4.7.

Definition 2.29 (Merkurjev pairing). Let X be a smooth proper variety over a field k of char-
acteristic different from 2 and K/k be a finitely generated field extension. Let z ∈ XK be a
closed point and let fz : Specκ(z) → SpecK be the structure morphism. For any unramified
class α ∈ H i

nr(k(X)/k,Z/2) we define

⟨z, α⟩ := (fz)∗ (αK |z) ∈ H i(K,Z/2).

Extending this definition linearly to arbitrary zero-cycles z ∈ Z0(X) yields a bilinear pairing

Z0(XK)×H i
nr(k(X)/k,Z/2) −→ H i(K,Z/2), (z, α) 7→ ⟨z, α⟩ .

Remark 2.30. This pairing is a slight variant of the Merkurjev pairing defined in [Mer08,
Section 2.4]. More precisely our definition of the Merkurjev pairing is the composition

Z0(XK)×H i
nr(k(X)/k,Z/2) (id,ψ∗)−−−−→ Z0(XK)×H i

nr(K(X)/K,Z/2) −→ H i(K,Z/2)

where ψ : SpecK(XK) → Spec k(X) is the natural morphism and the latter map is the Merkurjev
pairing as defined in [Mer08, Section 2.4]. Since the Merkurjev pairing descends to the level of
Chow groups due to Merkurjev [Mer08, Corollary 2.9], there is a well-defined pairing

CH0(XK)×H i
nr(k(X)/k,Z/2) −→ H i(K,Z/2), (z, α) 7→ ⟨z, α⟩ . (2.7)

The following lemma is an easy consequence of the various definitions made so far and will
be used later on.

Lemma 2.31. Let K/k be a finitely generated field extension and let ψ : SpecK → Spec k be
the natural morphism. Moreover, let X be a variety over k and let α ∈ H i

nr(k(X)/k,Z/2) be an
unramified cohomology class.

(a) Let z ∈ Z0(X) be a zero-cycle on X. Then

⟨zK , α⟩ = ψ∗ ⟨z, α⟩ ∈ H i(K,Z/2).

(b) Let τ0 : : Y → X be a generically finite morphism of varieties over k and τ : YK → XK the
corresponding morphism after the base change with ψ. Then for any zero-cycle w ∈ Z0(YK)
on YK

⟨w, τ∗0α⟩ = ⟨τ(w), α⟩ ∈ H i(K,Z/2).

Proof. We first prove item (a). Recall the definition of the Merkurjev pairing ⟨zK , α⟩: We start
with α ∈ H i

nr (k(X)/k,Z/2). Pulling back this class via the morphism XK → X we obtain an
unramified class αK ∈ H i

nr (K(XK)/K,Z/2). Since αK is unramified, it has trivial residue for
every geometric valuation, in particular by Theorem 2.26 (b) αK is contained in

Im
(
H i(OXK ,zK ,Z/2) ↪−→ H i(K(YK),Z/2)

)
.
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Hence, we find a (unique) element inH i(OXK ,zK ,Z/2) mapping to αK . Pulling back this element
via the natural map Specκ(zK) → SpecOXK ,zK and pushing it forward via the natural map
Specκ(zK) → SpecK gives the pairing ⟨zK , α⟩. The diagram below summarizes this discussion:

αK H i(K(XK), Z/2) H i(OXK ,zK , Z/2) H i(κ(zK), Z/2) H i(K, Z/2) ⟨zK , α⟩

α H i(k(X), Z/2).

∈
(fzK )∗ ∈

∈

Recall that all unnamed maps in this diagram are given by pull-backs of a morphism between
spectra of rings. We can complete this diagram in the following way:

αK H i(K(XK), Z/2) H i(OXK ,zK , Z/2) H i(κ(zK), Z/2) H i(K, Z/2) ⟨zK , α⟩

α H i(k(X), Z/2) H i(OX,z, Z/2) H i(κ(z), Z/2) H i(k, Z/2) ⟨z, α⟩ .

∈
(fzK )∗ ∈

∈ (fz)∗

ψ∗

∈

The commutativity of this diagram follows directly from the commutativity of the corresponding
diagram of k-algebras together with the functoriality of étale cohomology. In particular, we find
that

⟨zK , α⟩ = ψ∗ ⟨z, α⟩ ,

which proves item (a). We prove item (b) in a similar fashion: Let z = τ(w) be the image of w
under τ . The following diagram describes the pairing ⟨w, τ∗0α⟩:

H i(k(Y ), Z/2) H i(K(YK), Z/2) H i(OYK ,w, Z/2) H i(κ(w), Z/2) H i(K, Z/2)

τ∗0α ⟨w, τ∗0α⟩ .

(fw)∗

∈ ∈

Similarly, the pairing ⟨z, α⟩ = ⟨τ(w), α⟩ is given by

H i(k(X), Z/2) H i(K(XK), Z/2) H i(OXK ,z, Z/2) H i(κ(z), Z/2) H i(K, Z/2)

α ⟨z, α⟩ .

(fz)∗

∈ ∈

Since τ∗0α is a pull-back of α we can connect the two diagrams as follows:

τ∗0α ⟨w, τ∗0α⟩

H i(k(Y ), Z/2) H i(K(YK), Z/2) H i(OYK ,w, Z/2) H i(κ(w), Z/2) H i(K, Z/2)

H i(k(X), Z/2) H i(K(XK), Z/2) H i(OXK ,z, Z/2) H i(κ(z), Z/2) H i(K, Z/2)

α ⟨z, α⟩ .

∈ ∈

(fw)∗

τ∗0 τ∗

(fz)∗

∈ ∈

The commutativity follows from the commutativity of the corresponding diagrams of k-algebras
together with the functoriality of étale cohomology. Thus we get

⟨w, τ∗0α⟩ = ⟨z, α⟩ ,

which finishes the proof of item (b) and thus also concludes the proof of the lemma.
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Lastly, let us mention a vanishing result by Schreieder.

Theorem 2.32 ([Sch19b, Theorem 9.2]). Let f : Y → S be a surjective morphism of proper
varieties over an algebraically closed field k of characteristic char k ̸= 2 whose generic fibre is
birational to a smooth quadric over k(S). Let n = dimS and assume that there exists a class
β ∈ Hn(k(S),Z/2) with f∗β ∈ Hn

nr(k(Y )/k,Z/2).
Then for any dominant and generically finite morphism τ : Y ′ → Y of varieties and for any

subvariety E ⊂ Y ′ which meets the smooth locus of Y ′ and which does not dominate S via f ◦ τ ,
we have (τ∗f∗β)|E = 0 ∈ Hn(k(E),Z/2).



A strictly semi-stable model

Now we turn to our example regarding a (3, 3) complete intersection in P7. We will use a
degeneration similar to the one by Nicaise and Ottem in [NO22, Theorem 7.2]. Their model
is not strictly semi-stable, so we construct such a model by blowing-up one component of the
special fiber. The obstruction found by Nicaise and Ottem lies in the intersection of the two
components of the special fiber. In order to use the argument from [PS21] we need to blow-up
the intersection. To end up with a strictly semi-stable model after the blow-up we also need to
perform a 2 : 1 base change.

Let k0 be an algebraically closed field of characteristic different from 2. Let

k := k0(u, v, w)

be the algebraic closure of a purely transcendental, degree 3 extension of k0. We assume first
that char k ̸= 3 and give later on a strictly semi-stable model in characteristic 3 for which we
can use basically the same arguments in Chapter 4.

Definition 3.1. Let fw, gw, hw ∈ k0[x0, . . . , x6] be homogeneous polynomials with deg fw = 2,
deg gw = deg hw = 3 such that the hypersurfaces F := {fw = 0}, G := {gw = 0}, H :=
{hw = 0} ⊂ P6

k0
and all the complete intersections F ∩G, F ∩H, G ∩H and F ∩G ∩H ⊂ P6

k0
are smooth. (Bertini’s theorem implies the existence of such polynomials, in fact this works for
general fw, gw and hw.) Furthermore, we define the following three polynomials in k[x0, . . . , x5]:

f2 :=
3
√
4(x1x2 + x4x5) + x23,

f3 := x30 + x31 + x32 + x33 + x34 + x35,

f̂3 := x30 − x31 + ρx32 − ρx33 + ρ2x34 − ρ2x35,

where ρ ∈ k0 is a primitive third root of unity. (Note that such ρ exists as k0 is algebraically
closed.) Consider the following polynomials in k[x0, . . . , x7]:

cu,v,w := c0 + u(x6f2 + f3) + v(f3 + x36) + w(gw + x37),

qv,w := x3x6 − x4x5 + v(x3x7 + f2 + x26) + wfw,

ĉv,w := x36 + vf̂3 + whw,

where

c0 := x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)) ∈ k0[x0, . . . , x6].

Remark 3.2. Before starting the actual argument, let us make some short comments on the
chosen polynomials. At the end we specialize u, v, w all to 0. Thus we are mainly interested in
c0 and the term x3x6 − x4x5 which are also used in [Ska22]. The other terms ensure that our
model is strictly semi-stable and enable us to simplify the contribution of the Chow groups in the
obstruction map (2.4). In particular our choice of involving a cubic root of 4 and a third root of
unity is made solely to be able to work also in characteristic 5 and 7.

16



17

There are many instances in which certain varieties must be smooth. This will be shown by
using a degeneration argument, i.e. we degenerate to another proper variety and check that the
latter is smooth. We will give now a list of varieties to which we will later degenerate in order
to show smoothness.

Lemma 3.3. With the same notation as above:

A(i) := {fw = gw = hw = 0} ⊂ P6
k,

A(ii) := {gw + x37 = 0} ⊂ P7
k,

A(iii) := {gw + x37 = fw = 0} ⊂ P7
k,

A(iv) := {gw + x37 = hw = 0} ⊂ P7
k,

A(v) := {f3 = 0} ⊂ P5
k,

A(vi) := {f3 + x36 = 0} ⊂ P6
k,

A(vii) := {f3 + x36 = f̂3 = 0} ⊂ P6
k,

A(viii) := {f2 + x26 = f3 + x36 = 0} ⊂ P6
k,

A(ix) := {f2 = f3 = 0} ⊂ P5
k,

A(x) := {f2 + x26 = f3 + x36 = x3 = 0} ⊂ P6
k

are smooth complete intersections.

Proof. Recall that we use the notation F := {fw = 0}, G := {gw = 0}, H := {hw = 0} ⊂ P6
k.

Moreover, we chose fw, gw, hw ∈ k0[x0, . . . , x6] such that F, G, H, F ∩ G, F ∩ H, G ∩ H
and F ∩G ∩H ⊂ P6

k are smooth, in particular A(i) = F ∩G ∩H is smooth. We will prove the
smoothness of the remaining varieties via the Jacobian criterion.

Consider next A(ii). The vanishing of its Jacobian immediately implies x7 = 0. Thus the
smoothness of A(ii) follows directly from G being smooth. The Jacobian of A(iii) reads(

∂0g
w ∂1g

w . . . ∂6g
w 3x27

∂0f
w ∂1f

w . . . ∂6f
w 0

)
.

As F is smooth, we immediately obtain that x7 = 0. Therefore A(iii) is smooth, because F ∩G
is smooth. The smoothness of A(iv) follows by the same argument from H and G ∩ H being
smooth. The varieties A(v) and A(vi) are Fermat cubics and thus smooth as the characteristic
of k is different from 3. Next we turn to A(vii). Its Jacobian reads(

3x20 3x21 3x22 3x23 3x24 3x25 3x26
3x20 −3x21 3ρx22 −3ρx23 3ρ2x24 −3ρ2x25 0

)
.

Recall that ρ is a fixed primitive third root of unity. Let P = [x0 : · · · : x6] be a singular point
of A(vii). The vanishing of all 2× 2 minors of the Jacobian yields

aix
2
ix

2
j = ajx

2
ix

2
j , i, j ∈ {0, 1, . . . , 5} (3.1)

where ai is the coefficient of the monomial x3i in f̂3, i.e. ai ∈ {1,−1, ρ,−ρ, ρ2,−ρ2}. Since
ai ̸= aj for i ̸= j, (3.1) implies that at most one coordinate of x0, . . . , x5 is non-zero. Then all

coordinates x0, . . . , x5 have to be zero because f̂3 vanishes at P . The point [0 : · · · : 0 : 1] ∈ P6
k

is not contained in A(vii) because f3 + x36 = x36 ̸= 0 at that point. Thus we find that A(vii) is
smooth.
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The arguments for the smoothness of the last three varieties A(viii), A(ix) and A(x) are similar,
so we will mainly consider A(viii) and only indicate the changes for the other two varieties. The
Jacobian of A(viii) reads(

3x20 3x21 3x22 3x23 3x24 3x25 3x26
0 3

√
4x2

3
√
4x1 2x3

3
√
4x5

3
√
4x4 2x6

)
.

The Jacobian of A(ix) and A(x) are obtained by removing the last and forth column, respectively.
Let [x0 : · · · : x6] ∈ P6

k be a singular point of A(viii), i.e. all 2 × 2 minors vanish. Since A(viii)

should be smooth, we aim to find a contradiction: If x0 ̸= 0, then

x1 = x2 = x3 = x4 = x5 = x6 = 0,

which contradicts 0 = f3 + x36 = x30. Hence, we can assume that x0 = 0. Moreover, we obtain
the following conditions:

m1,2 : 0 = x31 − x32, (3.2)

m4,5 : 0 = x34 − x35, (3.3)

m1,4 : 0 = x21x5 − x24x2, (3.4)

mi,3 : 0 = 2x2ix3 −
3
√
4xjx

2
3, (i, j) ∈ {(1, 2), (2, 1), (4, 5), (5, 4)}, (3.5)

m3,6 : 0 = x3x6(x3 − x6). (3.6)

Note that by considering the minor mi,6 instead of mi,3 we can replace x3 in (3.4) by x6.
Moreover, the last condition exists and is needed only for A(viii). (It would be also trivial for
A(ix) and A(x).) We will distinguish the following two cases. Note that for the varieties A(ix)

and A(x) the cases reduce to x6 = 0, x6 ̸= 0 and x3 = 0, x3 ̸= 0, respectively.
Case 1. Assume x3 = x6 = 0. We may asssume without loss of generality x1 = 1. The

equation (3.2) implies that x32 = 1. Moreover,

x35 = x61x
3
5
(3.4)
= x64x

3
2 = x64

(3.3)
= x65,

i.e. x34
(3.3)
= x35 ∈ {0, 1}. Then,

0
!
= f3 + x36 = 2 + 2x34 ∈ {2, 4}

yields a contradiction.
Case 2. Assume now x3 ̸= 0 or x6 ̸= 0. Without loss of generality we may assume x3 = 1.

The equation (3.6) implies x36 ∈ {0, 1}. Moreover, for (i, j) ∈ {(1, 2), (2, 1), (4, 5), (5, 4)}

8x6i = (2x2i )
3 (3.5)

= (
3
√
4xj)

3 = 4x3j
(3.2),(3.3)

= 4x3i .

Thus, x3i ∈
{
0, 12
}
for i ∈ {1, 2, 4, 5}. Together with (3.2) and (3.3) we find that

0
!
= f3 + x36 = 2x31 + 2x33 + 1 + x36 ∈ {1, 2, 3, 4},

which yields the desired contradiction.

Let us construct now the model inspired by Nicaise and Ottem [NO22, Theorem 7.2]. Let
R := k[[t]] and consider the R-scheme

X := {cu,v,w = tĉv,w + qv,wx7 = 0} ⊂ P7
R.
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The special fibre Y of X → SpecR has two irreducible components, namely

Y = Y1 ∪ Y2,

where
Y1 = {cu,v,w = x7 = 0}, Y2 = {cu,v,w = qv,w = 0} ⊂ P7

k.

We denote their scheme-theoretic intersection by Z := Y1 ∩ Y2.

Lemma 3.4. The varieties Y1, Y2 and Z ⊂ P7 are smooth. The geometric generic fibre

XK := {cu,v,w = ĉv,w + t−1x7qv,w = 0} ⊂ P7
K

of X → SpecR is a smooth (3, 3) complete intersection.

Proof. Since the models in which we specialize are proper over some discrete valuation ring, any
singular point will specialize via u→ ∞, v → ∞ or w → ∞ to a singular point. Thus, it suffices
to prove that some specialization is smooth. This in turn follows from Lemma 3.3 as follows

Y1 specializes via v → ∞ to A(vi) from Lemma 3.3,

Y2 specializes via w → ∞ to A(iii) from Lemma 3.3,

Z specializes via v → ∞ to A(vii) from Lemma 3.3,

XK specializes via t→ ∞ and w → ∞ to A(iv) from Lemma 3.3.

This concludes the proof.

Remark 3.5. Let us write down one such specialization concretely: We consider the specializa-
tion v → ∞ for Y1. Recall that

Y1 = {cu,v,w = x7 = 0} =
{
c0 + u(x6f2 + f3) + v(f3 + x36) + w(gw + x37) = x7 = 0

}
⊂ P7

k,

see also Definition 3.1 for more details. Consider λ := 1
v and

ψ : Y1 := {λ (c0 + u(x6f2 + f3) + wgw) + f3 + x36 = 0} ⊂ P6
k0(u,w)[[λ]]

−→ Spec k0(u,w)[[λ]].

Then, the geometric generic fiber of ψ is isomorphic to Y1 and the special fiber is isomorphic to
A(vi) of Lemma 3.3, i.e. Y1 specializes to A(vi) in the sense of Section 2.3. The smoothness of
Y1 can be seen now as follows: Assume that the generic fiber of ψ is singular. Any singular point
of the generic fiber yields a point in Singψ. Since Singψ ⊂ Y1 is closed and ψ is proper, the
special fiber is also singular which contradicts Lemma 3.3, i.e. the generic fibre of ψ is smooth.
Since Y1 is isomorphic to the base change of the generic fibre with Spec k → Spec k0(u,w)[[λ]],
the variety Y1 is smooth. Thus, we convinced ourselves that it suffices to check smoothness after
some specialization in proper families.

Our current model X → SpecR is flat and proper. Moreover the irreducible components
of the special fiber and their intersections are smooth. However the components of the special
fiber of X → SpecR are not Cartier divisors in X , i.e. X → SpecR is not strictly semi-stable.
The problem is that the total space is singular.

Lemma 3.6. The singular locus of the total space X is given by

S := {cu,v,w = ĉv,w = qv,w = x7 = t = 0} ⊂ X .

Moreover, S is smooth and X has ordinary quadratic singularities along S.
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Proof. Let us first show that S is smooth. Using the definitions in Definition 3.1, S is isomorphic
to the variety {

c0+u(x6f2+f3)+v(f3+x36)+wg
w=x36+vf̂3+wh

w=0,

x3x6−x4x5+v(f2+x26)+wfw=0

}
⊂ P6

k.

By the same argument as in Remark 3.5 it suffices to check smoothness after some specialization.
The variety S specializes via w → ∞ to the smooth variety A(i) from Lemma 3.3, i.e. S is smooth.

Next we check that S is indeed the singular locus of X . Recall that the singular locus SingX
of X is given by the vanishing of the defining equations of X as well as all minors of the Jacobian.
The Jacobian of X is given by(

∂0cu,v,w . . . ∂6cu,v,w ∂7cu,v,w 0
t∂0ĉv,w + x7∂0qv,w . . . t∂6ĉv,w + x7∂6qv,w t∂7ĉv,w + qv,w + x7∂7qv,w ĉv,w

)
. (3.7)

Obviously, the variety S is contained in SingX because the defining equation and the second
row of (3.7) vanish. We show the opposite inclusion: Let ([x0 : · · · : x7], t) ∈ X be a singular
point. Note that {cu,v,w = 0} ⊂ P7

k is smooth because it specializes via w → ∞ to A(ii) from
Lemma 3.3. Hence ĉv,w = 0, because otherwise the Jacobian would have full rank. This implies
furthermore, by definition of X ,

x7qv,w = 0.

Since {cu,v,w = ĉv,w = 0} ⊂ P7
k specializes via w → ∞ to A(iv) from Lemma 3.3,

{cu,v,w = ĉv,w = 0} ⊂ P7
k

is smooth. Hence, the singular locus of X is contained in the special fiber. We have thus shown
that the singular locus of X is contained in

{cu,v,w = ĉv,w = t = x7qv,w = 0} ⊂ X .

Hence it suffices to show under the assumption cu,v,w = ĉv,w = t = 0 that

x7 = 0 ⇐⇒ qv,w = 0.

We start by showing “⇒”: Note that {c0+u(x6f2+f3)+v(f3+x36)+wgw = 0} ⊂ P6
k is smooth

because it specializes via v → ∞ to A(vi) from Lemma 3.3. Thus, we conclude that qv,w = 0 as
wanted because otherwise (3.7) has rank 2. For “⇐”, we note that

{cu,v,w = qv,w = 0} ⊂ P7
k

is smooth because it specializes via w → ∞ to A(iii) from Lemma 3.3. Thus, x7 has to be
equal to 0 as otherwise the Jacobian would have full rank. This shows SingX ⊂ S and thus
S = SingX .

Lastly, we describe the type of the singularities of X . Let P ∈ S be any point, i.e. P is a
singular point of X . Note that {ĉv,w = 0}, {qv,w = 0} ⊂ P7

k are smooth because they specialize to
F and H from Definition 3.1 which are smooth by definition, respectively. Thus the tangent cone
of {tĉv,w+x7qv,w = 0} ⊂ P7

R at P is Zariski locally isomorphic to the tangent cone of the ordinary
quadratic singularity {tx+yz = 0}. Moreover, the tangent cone of {tĉv,w+x7qv,w = 0} ⊂ P7

R at
P intersects the tangent space of {cu,v,w = 0} ⊂ P7

R at P transversely because {cu,v,w = 0} ⊂ P7
k

is smooth (as it specializes to A(ii) from Lemma 3.3 via w → ∞). This concludes the proof of
the lemma.

Remark 3.7. In the proof that the singularities of X are ordinary quadratic, we used that
{ĉv,w = 0} and {qv,w = 0} ⊂ P7

k are smooth. But the argument shows that it suffices that the
two varieties are smooth at every point of S. This slightly weaker assumption will be used for
the strictly semi-stable model in characteristic 3.
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Lemma 3.8. The blow-up X ′ := BlY1 X → SpecR is strictly semi-stable with special fibre Ỹ1∪Y2
where Ỹ1 = BlS Y1. Moreover,

Ỹ1 ∩ Y2 = BlS Z = Z = Y1 ∩ Y2.

Proof. The family X ′ → SpecR is clearly proper, as X is projective over R. Since R = k[[t]], the
affine scheme SpecR is an integral, regular scheme of dimension 1. By [Har77, III. Proposition
9.7] the family X ′ → SpecR is flat, because X ′ is integral and the morphism X ′ → SpecR is
dominant.

By Lemmata 3.4 and 3.6, we know that Y1, Y2, and S are smooth. Locally at a point of S,
X has ordinary quadratic singularities (see Lemma 3.6) and a local computation shows that the
special fibre of X ′ is given by Ỹ1 ∪ Y2 where Ỹ1 = BlS Y1: Recall that

X = {cu,v,w = tĉv,w + x7qv,w = 0} ⊂ P7
R

and Y1 = {t = x7 = 0} ⊂ X . Let Ui = {xi ̸= 0} ⊂ P7
R be the standard affine charts for 0 ≤ i ≤ 7.

Then,

BlY1∩Ui (X ∩ Ui) =

{
ai

x7
xi

−tbi=cu,v,w
(

x0
xi
,...,

x7
xi

)
=0,

aiĉv,w
(

x0
xi
,...,

x7
xi

)
+biqv,w

(
x0
xi
,...,

x7
xi

)
=0

}
⊂ A7

k × Spec k[[t]]× P1
k (3.8)

where [ai : bi] are the projective coordinates of P1
k for i ∈ {0, . . . , 7}. In particular, we find that

the special fiber is the union of two subvarieties, namely in the local description of the blow-up{
t =

x7
xi

= 0

}
∪ {t = ai = 0} ⊂ BlY1∩Ui (X ∩ Ui) .

The latter one, i.e. {t = ai = 0} is obviously isomorphic to Y2 ∩ Ui. Let us compute now the
blow-up of Y1 in S to see that it is the other irreducible component of the special fibre of
X ′ → SpecR: Consider

Y1 = {cu,v,w(y0, . . . , y6, 0) = 0} ⊂ P6
k

and let Vj = {yj ̸= 0} ⊂ P6
k be the standard affine charts for 0 ≤ j ≤ 6. Recall that

S = {ĉv,w(y0, . . . , y6, 0) = qv,w(y0, . . . , y6) = 0} ⊂ Y1.

Then we find that

BlS∩Vj (Y1 ∩ Vj) =

αj ĉv,w

(
y0
yj
,...,

y6
yj
,0

)
−βjqv,w

(
y0
yj
,...,

y6
yj
,0

)
=0,

cu,v,w

(
y0
yj
,...,

y6
yj
,0

)
=0

 ⊂ A6
k × P1

k, (3.9)

where [αj : βj ] are the projective coordinates of P1
k for j ∈ {0, . . . , 6}. Comparing now (3.8)

and (3.9), we see that the first component of the special fiber is precisely the blow-up of Y1 in
S as claimed. We can use this local description to check that the irreducible components are
smooth and Cartier in X , but we prefer the general theory of blow-ups here: Since Y1 and S
are smooth, the blow-up Ỹ1 = BlS Y1 is also smooth. Moreover, Ỹ1 ∩ Y2 = BlS Z = Z where the
latter equation comes from the fact that S is Cartier in Z. Thus, the irreducible components
of the special fiber of X ′ and their intersection are smooth. By construction, Ỹ1 ⊂ X is Cartier
and (3.8) shows that Y2 is Cartier, i.e. X ′ is strictly semi-stable.
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Lemma 3.9. Let X ′′ = X ′ ×R→R
t→t2

R be the 2 : 1 base change of X ′. The blow-up

X̃ := BlZ X ′′ −→ SpecR (3.10)

is a strictly semi-stable R-scheme with special fibre X̃k = Ỹ1 ∪ PZ ∪ Y2 where PZ is a P1
k-bundle

over Z. The intersections Ỹ1 ∩PZ and Y2 ∩PZ are disjoint sections of PZ → Z. The geometric
generic fibre

X̃K := {cu,v,w = t2ĉv,w + x7qv,w = 0} ⊂ P7
K

is a smooth (3, 3) complete intersection.

Proof. Recall that X ′ → SpecR is strictly semi-stable by Lemma 3.8. A local computation as
in Lemma 3.6 shows that the singular locus of X ′′ is the intersection Z of the two components
of the special fibre. Hence, the 2 : 1 base change is regular away from the singular locus Z of
the special fiber. A computation in affine charts shows that the special fibre of the blow-up
X̃ → SpecR is Ỹ1 ∪ PZ ∪ Y2 where PZ is a P1-bundle, because it is a smooth conic bundle
with a section, e.g. Ỹ1 ∩ PZ . As the singularities of X ′′ are ordinary quadratic, the blow-up
resolves them, i.e. X̃ is regular and thus in particular strictly semi-stable. The smoothness of
the geometric generic fibre follows from Lemma 3.4.

Remark 3.10. The 2 : 1 base change is necessary to ensure that the components of the special
fiber are reduced.

3.1 A strictly semi-stable model in characteristic 3

As mentioned in the beginning of the previous section, we construct also a strictly semi-stable
model in characteristic 3. Let k0 be an algebraically closed field of characteristic 3 and let k :=
k0(u, v, w) be the algebraic closure of a purely transcendental extension of k0 of transcendental
degree 3.

Definition 3.11. We define the following three polynomials:

f
(3)
2 := x21 + x22 + x23 + x24 + x25 ∈ k[x0, . . . , x5],

f
(3)
3 := x30 + x0x

2
1 + x1x

2
2 + x2x

2
4 + x4x

2
5 + x5x

2
3 ∈ k[x0, . . . , x5],

f̂
(3)
3 := x21x2 + x22x4 + x24x5 + x25x3 + x23x6 + x36 ∈ k[x0, . . . , x6].

Moreover, we consider the following three polynomials in k[x0, . . . , x7]:

c(3)u,v,w := c0 + u
(
x6f

(3)
2 + f

(3)
3

)
+ v

(
f
(3)
3 + x3x

2
6

)
+ w

(
f
(3)
3 + x3x

2
6 + x6x

2
7

)
,

q(3)v,w := x3x6 − x4x5 + v
(
x3x7 + f

(3)
2 − x26

)
+ w

(
f
(3)
2 − x26 + x27

)
,

ĉ(3)v,w := x36 + vf̂
(3)
3 + w

(
f̂
(3)
3 + x26x7 + x37

)
,

where

c0 := x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)) ∈ k0[x0, . . . , x6].

Remark 3.12. The polynomials are chosen such that the arguments and constructions which
we made in characteristic different from 2 and 3 can easily adapted to this model. In particular
we need that certain varieties are smooth, see Lemma 3.3. The analogue statement is written
down in the lemma below. Note that the varieties are labelled such that the labeling agrees with
the labeling from Lemma 3.3.
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Lemma 3.13. With the same notation as in Definition 3.11:

A′
(i) := {f (3)3 + x3x

2
6 = f̂

(3)
3 = f

(3)
2 + x26 = 0} ⊂ P6

k,

A′
(ii) := {f (3)3 + x3x

2
6 + x6x

2
7 = 0} ⊂ P7

k,

A′
(iii) := {f (3)3 + x3x

2
6 + x6x

2
7 = f

(3)
2 − x26 + x27 = 0} ⊂ P7

k,

A′
(iv) := {f (3)3 + x3x

2
6 + x6x

2
7 = f̂

(3)
3 + x26x7 + x37 = 0} ⊂ P7

k,

A′
(v) := {f (3)3 = 0} ⊂ P5

k,

A′
(vi) := {f (3)3 + x3x

2
6 = 0} ⊂ P6

k,

A′
(vii) := {f (3)3 + x3x

2
6 = f̂

(3)
3 = 0} ⊂ P6

k,

A′
(viii) := {f (3)2 − x26 = f

(3)
3 + x3x

2
6 = 0} ⊂ P6

k,

A′
(ix) := {f (3)2 = f

(3)
3 = 0} ⊂ P5

k,

A′
(x) := {f (3)2 − x26 = f

(3)
3 + x3x

2
6 = x3 = 0} ⊂ P6

k

are smooth complete intersections.

Proof. Recall that k is a field of characteristic 3. We use the Jacobian criterion as in the proof
of Lemma 3.3 to show smoothness. Let us start with A′

(ii). Its Jacobian is given by(
x21 2x0x1 + x22 2x1x2 + x24 2x3x5 + x26 2x2x4 + x25 2x4x5 + x23 2x3x6 + x27 2x6x7

)
.

Thus we immediately see that the Jacobian vanishes if and only if

x1 = x2 = x4 = x5 = x3 = x6 = x7 = 0.

Hence, the only singular point of A′
(ii) might be the point [1 : 0 : · · · : 0] ∈ P7

k. Since that point

does not lie on A′
(ii), the variety A′

(ii) is smooth. The same argument shows that A′
(v) and A

′
(vi)

are smooth.

Next we consider A′
(iii). Its Jacobian reads(

x21 2x0x1 + x22 2x1x2 + x24 2x3x5 + x26 2x2x4 + x25 2x4x5 + x23 2x3x6 + x27 2x6x7
0 2x1 2x2 2x3 2x4 2x5 −2x6 2x7

)
.

We denote the 2× 2 minor given by the i-th and j-th column by m
(iii)
i,j . Using the vanishing of

m
(iii)
0,1 , m

(iii)
1,2 , m

(iii)
2,4 , m

(iii)
4,5 , m

(iii)
5,3 , m

(iii)
3,6 and m

(iii)
6,7

in this order we find that

x1 = x2 = x4 = x5 = x3 = x6 = x7 = 0.

More precisely, the vanishing of m
(iii)
0,1 implies x1 = 0. Then, the vanishing of m

(iii)
1,2 yields x2 = 0

and so on. We note that the point [1 : 0 : · · · : 0] ∈ P7
k does not lie on A′

(iii). Hence the previous

argument shows that A′
(iii) is smooth. The same argument shows the smoothness of A′

(viii) and

A′
(ix) because we used the sixth and seventh row of the Jacobian only to conclude x6 = 0 and

x7 = 0, respectively.
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The Jacobian of A′
(x) is given byx21 2x0x1 + x22 2x1x2 + x24 2x3x5 + x26 2x2x4 + x25 2x4x5 + x23 2x3x6

0 2x1 2x2 2x3 2x4 2x5 −2x6
0 0 0 1 0 0 0

 .

The same approach as for A′
(iii) shows that

x1 = x2 = x4 = x5 = 0.

Since the line
{x1 = x2 = x4 = x5 = x3 = 0} ⊂ P6

k

does not intersect A′
(x), it follows that A

′
(x) is smooth.

Consider A′
(iv) and look at its Jacobian(

x21 2x0x1 + x22 2x1x2 + x24 2x3x5 + x26 2x2x4 + x25 2x4x5 + x23 2x3x6 + x27 2x6x7
0 2x1x2 2x2x4 + x21 2x3x6 + x25 2x4x5 + x22 2x3x5 + x24 2x6x7 + x23 x26

)
.

We denote the determinant of the 2 × 2 minor involving the i-th and j-the column by m
(iv)
i,j .

Then the equations

0 = m
(iv)
0,1 = x31x2,

0 = m
(iv)
0,2 = x21x2x4 + x41

imply x1 = 0. Similarly, the vanishing of(
m

(iv)
1,2 ,m

(iv)
1,4

)
,
(
m

(iv)
2,4 ,m

(iv)
2,5

)
,
(
m

(iv)
4,5 ,m

(iv)
4,3

)
,
(
m

(iv)
5,3 ,m

(iv)
5,6

)
and

(
m

(iv)
3,7

)
implies that

x2 = x4 = x5 = x3 = x6 = 0.

Thus A′
(iv) is smooth, because it does not intersect the line

{x1 = x2 = x3 = x4 = x5 = x6 = 0} ⊂ P7
k.

The smoothness of A′
(vii) is shown by the same argument. Note that it is crucial that the

polynomial f̂
(3)
3 contains the monomial x36.

It is left to prove that A′
(i) is smooth. Its Jacobian readsx21 2x0x1 + x22 2x1x2 + x24 2x3x5 + x26 2x2x4 + x25 2x4x5 + x23 2x3x6

0 2x1x2 2x2x4 + x21 2x3x6 + x25 2x4x5 + x22 2x3x5 + x24 x23
0 2x1 2x2 2x3 2x4 2x5 −2x6

 . (3.11)

We claim that any singular point satisfies

x1 = x2 = x4 = x5 = 0. (3.12)

Assume that this claim holds. Then it follows immediately that A′
(i) is smooth: Let [x0 : · · · : x6]

be a singular point of A′
(i). The vanishing of f̂

(3)
3 and f

(3)
2 − x26 reads

0 = x23x6 + x36 = x23 − x26,
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i.e. implies x3 = x6 = 0. Since [1 : 0 · · · : 0] ∈ P6
k is not contained in A′

(i), we conclude the

variety A′
(i) is smooth if the claim that any singular point satisfies (3.12) holds. Thus it is left

to show the claim. We will prove it by contradiction and assume that one of the four variables
is non-zero. Let us order the four variables as follows

x1, x2, x4, and x5. (3.13)

Note that if the first k of these variables are zero, then the Jacobian looks similar to (3.11) in
the sense that up to removing some zero columns and rearranging the columns it has the formx2 . . . . . . . . .

0 2xy x2 + 2yz . . .
0 2x 2y . . .

 .

If x ̸= 0, the Jacobian of A′
(i) has not the full rank if and only if the 2× 2 minors of the last two

rows vanish, i.e. we obtain equation of the form

0 = 2xy(. . . )− 2x(. . . ) ⇐⇒ 0 = y(. . . )− (. . . ).

We use this observation to find a contradiction in each of the following four cases which we
distinguish by the first non-zero variable in (3.13):

Case 1. Assume x1 ̸= 0: Using the approach we describe above, we obtain the following
equations:

0 = 2x22 − x21 − 2x2x4,

0 = 2x2x4 − x22 − 2x4x5,

0 = −2x2x6 − x23,

0 = 2x2x3 − x25 − 2x3x6,

0 = 2x2x5 − x24 − 2x3x5.

We see from the first equation that x2 ̸= 0 (otherwise x1 = 0). Thus we can assume without
loss of generality x2 = 1. Rearranging these equations yields

x21 = x4 − 1 (3.14)

x4x5 = x4 + 1 (3.15)

x6 = x23, (3.16)

x25 = x3x6 − x3 = x33 − x3, (3.17)

x24 = x5(x3 − 1). (3.18)

The vanishing of f̂
(3)
3 yields

0 = x21 + x4 + x24x5 + x25x3 + x23x6 + x36
(3.14)
= x4 − 1 + x4 + x24x5 + x25x3 + x23x6 + x36

(3.15)
= 2x4 − 1 + x4(x4 + 1) + x25x3 + x23x6 + x36

(3.16)
= 2x4 − 1 + x4(x4 + 1) + x43 − x23 + x23x6 + x36

(3.17)
= x24 − 1 + x43 − x23 + x43 + x63
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= x24 − 1− x23 − x43 + x63, (3.19)

and also

0 = x21 + x4 + x24x5 + x25x3 + x23x6 + x36
(3.14)
= x4 − 1 + x4 + x24x5 + x25x3 + x23x6 + x36

(3.18)
= −x4 − 1 + x25(x3 − 1) + x25x3 + x23x6 + x36

(3.16)
= −x4 − 1 + (x33 − x3)(−x3 − 1) + x23x6 + x36

(3.17)
= −x4 − 1 + (x33 − x3)(−x3 − 1) + x43 + x63

= −x4 − 1 + x3 + x23 − x33 + x63. (3.20)

Plugging (3.20) in (3.19) yields

0 = (−1+x3+x
2
3−x33+x63)2−1−x23−x43+x63 = x123 +x93−x83−x73+x53+x43+x33+x23+x3 =: p1.

Moreover, squaring (3.18) and using (3.19) yields

0 = (1 + x23 + x43 − x63)
2 − (x33 − x3)(x3 − 1)2 = x123 + x103 − x83 − x53 − x43 + x3 + 1 =: p2.

If A′
(i) has a singular point with x1 ̸= 0, then two polynomial p1 and p2 in k[x3] must have a

non-trivial greatest common divisor. Thus, we find a contradiction by showing that the greatest
common divisor of these two polynomials is a unit. Note that

p1 − p2 = −x103 + x93 − x73 − x53 − x43 + x33 + x23 − 1.

Thus, we compute the greatest common divisor of p2 and p1 − p2:

p2 = (−x23 − x3 + 1) · (p1 − p2) + x93 + x83 + x63 − x43 + x23 − 1,

p1 − p2 = (−x3 − 1) · (x93 + x83 + x63 − x43 + x23 − 1) + p3,

x93 + x83 + x63 − x43 + x23 − 1 = (x3 + 1) · p3 − x73 − x63 + x53 − x43 − x33 + 1,

p3 = (−x3 + 1) · (−x73 − x63 + x53 − x43 − x33 + 1)− x53 + x43 − x23,

−x73 − x63 + x53 − x43 − x33 + 1 = (x43 − x33 + x23 + x3) · (−x33 + x23 − 1) + x23 + x3 + 1,

−x33 + x23 − 1 = (−x3 − 1) · (x23 + x3 + 1)− x3,

x23 + x3 + 1 = (x3 + 1) · x3 + 1,

where p3 = x83 + x63 + x53 + x43 − x33 − x23 − x3 + 1.
Case 2. Assume x1 = 0, x2 ̸= 0: By the same argument as in Case 1, we can assume without

loss of generality x4 = 1 and obtain the following equations:

x22 = x5 − 1, (3.21)

x3x5 = x5 + 1, (3.22)

x6 = x23, (3.23)

x25 = x3(x6 − 1) = x33 − x3. (3.24)

Since f̂
(3)
3 and f

(3)
2 − x26 vanish, we obtain the condition

0 = (x22 + x5 + x25x3 + x23x6 + x36) + (x22 + x23 + 1 + x25 − x26)
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(3.21)
= 3x5 − 2 + x25(x3 + 1) + x23x6 + x36 + x23 + 1− x26

(3.23)
= −1 + x25(x3 + 1) + x43 + x63 + x23 − x43

(3.24)
= −1 + (x33 − x3)(x3 + 1) + x23 + x43 + x63 − x43

= x63 + x43 + x33 − x3 − 1.

On the other hand,

1
(3.22)
= x25(x3 − 1)2

(3.24)
= (x33 − x3)(x3 − 1)2,

i.e.
0 = x53 + x43 − x23 − x3 − 1.

We check again that the greatest common divisors of the two polynomials is a unit and conclude
that no singular point of A′

(i) satisfies x1 = 0, x2 ̸= 0:

x63 + x43 + x33 − x3 − 1 = (x3 − 1) · (x53 + x43 − x23 − x3 − 1)− x43 − x33 − x3 + 1,

x53 + x43 − x23 − x3 − 1 = x3 · (x43 + x33 + x3 − 1) + x23 − 1,

x43 + x33 + x3 − 1 = (x23 + x3 + 1) · (x23 − 1)− x3,

x23 − 1 = x3 · x3 − 1.

Case 3. Assume x1 = x2 = 0, x4 ̸= 0: By the same argument as in Case 1 and Case 2 we can
assume without loss of generality x5 = 1 and obtain the following equations:

x24 = x3 − 1,

x6 = x23,

0 = −x3x6 + x3 + 1 = −x33 + x3 + 1.

Moreover, the vanishing of f̂
(3)
3 implies

0 = x24 + x3 + x23x6 + x36 = x3 − 1 + x3 + x43 + x63 = x63 + x43 − x3 − 1.

The greatest common divisor of these two polynomials is a unit:

x63 + x43 − x3 − 1 = (x33 − x3 + 1)(x33 − x3 − 1)− x23 − x3

x33 − x3 − 1 = (−x3 + 1)(−x23 − x3)− 1.

Hence, no singular point of A′
(i) satisfies x1 = 0, x2 = 0, x4 ̸= 0.

Case 4. Assume x1 = x2 = x4 = 0, x5 ̸= 0: As in the previous cases we can assume without
loss of generality x3 = 1. Moreover, any singular point of A′

(i) satisfies

x6 = 1, x25 = x6 − 1 = 0

which contradicts our assumption that x5 ̸= 0.
This concludes the proof of the claim that any singular point of A′

(i) satisfies (3.12) and thus
finishes the proof of the lemma.

Recall that k = k0(u, v, w) where k0 is an algebraically closed field of characteristic 3. Let
R = k[[t]] be the formal power series in one variable over k and consider the R-scheme

X :=
{
c(3)u,v,w = tĉ(3)v,w + x7q

(3)
v,w = 0

}
⊂ P7

R
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where the polynomials are defined as in Definition 3.11. The special fiber Xk of X → SpecR
has the two irreducible components

Y1 :=
{
c(3)u,v,w = x7 = 0

}
, Y2 :=

{
c(3)u,v,w = q(3)v,w = 0

}
⊂ P7

k.

Let Z := Y1∩Y2 denote their scheme-theoretic intersection. The model X → SpecR is again not
strictly semi-stable because X is not smooth. More precisely, the singular locus of X is given by

S :=
{
c(3)u,v,w = ĉ(3)v,w = q(3)v,w = x7 = t = 0

}
⊂ X .

This can be seen by following the argument in Lemma 3.6 and replacing the A(...) from Lemma 3.3
with A′

(...) from Lemma 3.13. Applying the same construction to X → SpecR as in characteristic
different from 3, which was done in the previous section, we obtain a strictly semi-stable model.

Lemma 3.14. The blow-up X ′ := BlY1 X is a strictly semi-stable R-scheme with special fibre
Ỹ1 ∪ Y2 where Ỹ1 = BlS Y1. Furthermore, consider the 2 : 1 base change X ′′ := X ′ ×R→R

t→t2
R.

Then, the blow-up
X̃ := BlZ

(
X ′′) −→ SpecR (3.25)

of X ′′ in the subvariety Z is a strictly semi-stable R-scheme with special fibre Ỹ1∪PZ ∪Y2 where
PZ is a P1

k-bundle over Z. The intersections Ỹ1∩PZ and Y2∩PZ are disjoint sections of PZ → Z
and the geometric generic fibre

X̃K :=
{
c(3)u,v,w = t2ĉ(3)v,w + x7q

(3)
v,w = 0

}
⊂ P7

K

of X̃ → SpecR is a smooth (3, 3) complete intersection.

Remark 3.15. We use the same letters for this strictly semi-stable model as for the model
constructed before in characteristic different from 3 to simplify the statements in the next chapter.
But we will repeatedly mention that in characteristic 3 the model looks different.

The lemma is proved by adapting the proofs of Lemmata 3.4, 3.6, 3.8 and 3.9. Let us make
this more precise: In Lemmata 3.4, 3.6, 3.8 and 3.9 we often degenerate to a variety A(...) from
Lemma 3.3 to show smoothness. For the proof of Lemma 3.14 we instead degenerate to the
variety A′

(...) (with the same index) from Lemma 3.13. Moreover in the proof of Lemma 3.6 we
used that

{ĉv,w = 0}, {qv,w = 0} ⊂ P7
k

are smooth to describe the singularities of X → SpecR (in characteristic different from 2 and
3). In characteristic 3 the varieties

{ĉv,w = 0}, {q(3)v,w = 0} ⊂ P7
k

are singular. But as already mentioned in Remark 3.7 it suffices that the two latter varieties are
smooth along S which is proved in the lemma below. Besides this two adjustments the arguments
from Lemmata 3.4, 3.6, 3.8 and 3.9 can be copied to prove Lemma 3.14.

Lemma 3.16. The varieties

A′
(xi) :=

{
q(3)v,w = 0

}
⊂ P7

k,

A′
(xii) :=

{
ĉ(3)v,w = 0

}
⊂ P7

k

are smooth along S =
{
x7 = q

(3)
v,w = ĉ

(3)
v,w = c

(3)
u,v,w = 0

}
⊂ P7

k.
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Proof. The Jacobian of A′
(xi) reads (up to some factors of the form 2(v + w))(

0 x1 x2 2(v + w)x3 + vx7 + x6 x4 − 1
2(v+w)x5 x5 − 1

2(v+w)x4 −x6 + 1
2(v+w)x3 vx3 + 2wx7

)
.

Using that S ⊂ {x7 = 0}, we immediately see that the only singular point of A′
(xi) which might

be contained in S is [1 : 0 : · · · : 0]. Since c(3)u,v,w does not vanish at this point, we find that A′
(xi)

is smooth along S. The Jacobian of A′
(xii) is (up to some factors of the form (v + w)) given by(

0 2x1x2 2x2x4 + x21 2x3x6 + x25 2x4x5 + x22 2x3x5 + x24 x23 + 2wx6x7 wx26
)
.

Thus A′
(xii) is smooth away from the line l = {x1 = x2 = · · · = x6 = 0} ⊂ P7

k which does not

intersects S, i.e. A′
(xii) is smooth along S.



Very general (3,3) fivefolds are irra-
tional

In this section we prove that the geometric generic fibre X̃K of the strictly semi-stable family
X̃ → SpecR does not admit a decomposition of the diagonal which implies Theorem 1.1. Recall
that we defined the strictly semi-stable family X̃ → SpecR in characteristic 3 (see Lemma 3.14)
slightly different from the one in characteristic char k ̸= 3 (see Lemma 3.9).

To this end let A := OX̃ ,ηPZ
be the local ring of X̃ at the generic point ηPZ

of PZ with

residue field κ(PZ). Then X̃A → SpecA is strictly semi-stable and we obtain a homomorphism

ΦX̃A,PZ
: CH1(X̃k × κ(PZ)) −→ CH0(PZ × κ(PZ)),

where X̃k denotes the special fiber of the strictly semi-stable model X̃ → SpecR. The main
result of this section is the following proposition which implies that X̃K does not admit a
decomposition of the diagonal by Theorem 2.14.

Proposition 4.1. Let X̃ → SpecR be the strictly semi-stable model with special fibre Ỹ1∪PZ∪Y2
from (3.10), or from (3.25) if char k = 3. Let A = OX̃ ,PZ

be the local ring at the generic point
of PZ with residue field κ(PZ). Then for any zero-cycle z ∈ CH0(PZ), the element

δPZ
− zκ(PZ) ∈ CH0(PZ × κ(PZ))

does not lie in the image of ΦX̃A,PZ
modulo 2, where δPZ

denotes the diagonal point of PZ×κ(PZ).

Let us lay down the strategy of the proof first: We will assume that the element is contained
in the image of ΦX̃A,PZ

modulo 2. Similar to [PS21] the strategy is to simplify the contribution

from CH1(X̃k ×κ(PZ)) by repeatedly applying Fulton’s specialization map. A new ingredient is
the idea of degenerations to cones which have trivial Chow groups of zero-cycles. We will arrive
at the conclusion that the diagonal point δZ0 ∈ CH0(Z0 × κ(Z0)) satisfies

δZ0 ∈ Im (CH0(Z0) −→ CH0(Z0 × κ(Z0))) mod 2.

This contradicts some property of the non-trivial unramified cohomology with Z/2-coefficients
on Z0 which is also studied in [Ska22].

Before we give the details of the proof we start with a couple of observations regarding certain
Chow groups and an cohomological obstruction which gives the contradiction in the proof of
Proposition 4.1. These are laid down in the following two section. In the last section we give
the actual argument as well as some consequences of Proposition 4.1.

30
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4.1 Chow groups of certain varieties

We describe some Chow groups of certain varieties which we consider later in the proof of
Proposition 4.1. The following lemma works quite generally and describes the Chow group of
one-cycles for a variety which is the intersection of a cone with a hypersurface that intersects
the vertex of the cone with high multiplicity.

Lemma 4.2. Let W := {F1 = · · · = Fr = 0} ⊂ Pnκ be a smooth variety over some field κ where
F1, . . . , Fr ∈ κ[x0, . . . , xn] are some homogeneous polynomials and r ≥ 0. Let

V := {F1 = · · · = Fr = g1xn+1 + g0 = 0} ⊂ Pn+1
κ

where gi ∈ k[x0, . . . , xn] are homogeneous polynomials of degree d− i. Assume further that

D := {F1 = · · · = Fr = g1 = g0 = 0} ⊂ Pnκ

is smooth. Then for any field extension κ′/κ there is a surjective homomorphism

CH0(D ×κ κ
′)⊕ CH1(W ×κ κ

′) −↠ CH1(V ×κ κ
′).

Remark 4.3. Our assumption on D and W implies that V is smooth away from Q.

Proof. We first note that V is the intersection of the cone CW overW ⊂ Pnκ ∼= {xn+1 = 0} ⊂ Pn+1
κ

with vertex Q := [0 : · · · : 0 : 1] ∈ Pn+1
κ and the degree d hypersurface H := {g1xn+1 + g0 =

0} ⊂ Pn+1
κ . As CW is a cone with vertex Q, the projection from Q induces a rational map

φ : CW 99KW.

Away from the point Q, φ is a morphism CW \Q→ W whose fiber over some κ-rational point
P ∈W is the line lP through Q and P ∈W where we view W as a subvariety of the hyperplane
{xn+1 = 0} ⊂ Pn+1

κ . The hypersurface H intersects the line lP at the point Q with multiplicity
d− 1. Hence, there is a unique other point on that line in the intersection V = CW ∩H which
is mapped to P under φ. Thus, φ|V yields a birational map

V 99KW.

This map is resolved by the isomorphism

BlQ V
∼=−→ BlDW

which can be checked by an explicit computation: We consider the blow-up of H at the point Q
because BlQ V is the strict transform of V under the blow-up BlQH → H. Recall that the blow-
up BlQH is given by the closure of the graph of the rational map [x0 : · · · : xn+1] 7→ [x0 : · · · : xn].
Let x0, . . . , xn+1 and y0, . . . , yn denote the coordinates of Pn+1

κ ×Pnκ. The blow-up BlQH is given
in the chart U ′

i := {yi ̸= 0} ⊂ Pn+1
κ × Pnκ by

BlQH|U ′
i
=

{
xn+1g1

(
y0
yi
,..., yn

yi

)
+xig0

(
y0
yi
,..., yn

yi

)
=0,

xj=xi
yj
yi

for j∈{0,...,n}\{i}

}
⊂ Pn+1

κ × Anκ.

The equations xj = xi
yj
yi

describe hyperplanes in the first factor, i.e. we can also describe the
blow-up as

BlQH|U ′
i

∼=
{
xn+1g1

(
y0
yi
, . . . ,

yn
yi

)
+ xig0

(
y0
yi
, . . . ,

yn
yi

)
= 0

}
⊂ P1

κ × Anκ
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where xi, xn+1 and y0
yi
, . . . , ynyi are the coordinates of P1

κ and Anκ, respectively. Hence,

BlQ V |U ′
i
=

{
F1

(
y0
yi
,..., yn

yi

)
=···=Fr

(
y0
yi
,..., yn

yi

)
=0,

xn+1g1
(

y0
yi
,..., yn

yi

)
+xig0

(
y0
yi
,..., yn

yi

)
=0

}
⊂ P1

κ × Anκ. (4.1)

Similarly, the blow-up of W in D is the strict transform of the blow-up of Pnκ in {g0 = g1 = 0} ⊂
Pnκ. Hence, in the affine charts Ul := {xl ̸= 0}:

BlD∩Ul
(W ∩ Ul) =

{
F1

(
x0
xl
,...,xn

xl

)
=···=Fr

(
x0
xl
,...,xn

xl

)
=0,

sg1
(

x0
xl
,...,xn

xl

)
−tg0

(
x0
xl
,...,xn

xl

)
=0

}
⊂ Anκ × P1

κ (4.2)

where x0
xl
, . . . , xnxl and s, t are the coordinates of Anκ and P1

κ, respectively. Moreover, the birational
map φ|V extends to a morphism

BlQ V −→ BlDW.

The morphism is given in the charts which are described in (4.1) and (4.2) for i = l ∈ {0, . . . , n}
by (

[xi : xn+1],

(
y0
yi
, . . . ,

yn
yi

))
7→
((

y0
yi
, . . . ,

yn
yi

)
, [xi : −xn+1]

)
.

Thus, we see that BlQ V → BlDW is a birational morphism which is locally an isomorphism,
i.e. it is an isomorphism which extends φ|V .

Hence, there is an isomorphism on the level of Chow groups

CH1(BlDW )
∼=−→ CH1(BlQ V ).

SinceW and D are smooth, we can apply the blow-up formula for Chow groups (see e.g. [Voi03,
Theorem 9.27]), i.e. there exists an isomorphism

CH0(D)⊕ CH1(W ) ∼= CH1(BlDW ).

Consider the natural pushforward

CH1(BlQ V ) −→ CH1(V )

of the proper morphism π : BlQ V → V . Since π is an isomorphism away from Q, which is a
(singular) point, the pushforward on the Chow groups of one-cycles is surjective. Indeed the
strict transform of a one-cycle on V is mapped to that one-cycle under the pushforward map.

As blow-ups commute with extension of the base field, the above construction also holds
after some base extension. Thus, we obtain a surjective homomorphism

CH0(D ×κ κ
′)⊕ CH1(W ×κ κ

′) −↠ CH1(V ×κ κ
′).

This concludes the proof of the lemma.

Next we observe that cones in Pnk with a k-rational point as vertex have universally trivial
Chow group of zero-cycles.

Definition 4.4. Let V = {F1 = · · · = Fr = 0} ⊂ Pnk be a variety with a k-rational point P where
F1, . . . , Fr ∈ k[x0, . . . , xn] are some homogeneous polynomials. We say that V is a cone over
P if after a suitable coordinate transformation x0, . . . , xn 7→ y0, . . . , yn the point P is the point
[0 : · · · : 0 : 1] and the homogeneous polynomials F1, . . . , Fr are contained in k[y0, . . . , yn−1].
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Lemma 4.5. Let V ⊂ Pnk be a cone with a k-rational point P as vertex. Then V has universally
trivial Chow group of zero-cycles.

Proof. We need to show that for any field extension F/k the degree map deg : CH0(VF ) → Z is
an isomorphism. Since P is k-rational point, it suffices to show that any closed point Q ∈ VF is
rationally equivalent to deg(Q) · PF .

Let Q ∈ VF be a closed point and let r := deg(Q) = [F (Q) : F ]. Consider the base change
of VF to the algebraic closure F of F . Then there are exactly r closed point Q1, . . . , Qr ∈ VF
which map to Q ∈ VF under the natural map VF → VF . Since V is cone over P , the base-change
VF is also a cone with vertex PF . Hence, there exist (unique) lines l1, . . . , lr such that li passes
through PF and Qi. Let L = l1 ∪ · · · ∪ lr be the union of these lines. As PF is the base-change
of the F -rational point PF and the points Qi are mapped to Q under the map VF → VF , we
see that the point PF and the union of points Q1 ∪ · · · ∪ Qr are invariant under the action of
Gal(F/F ). Thus, L is invariant under the action of Gal(F/F ). In particular we find that L is
the base change of some subvariety L′ ⊂ PnF .

Since Li is a line for every i ∈ {1, 2, . . . , r}, there exist some fi ∈ F (Li) such that

PF −Qi = div(fi).

In particular

rPF −
r∑
i=1

Qi = div(f)

where f :=
r∏
i=1

fi ∈ F (L). Since L is invariant under Gal(F/F ), the rational function f is

contained in F (L′), i.e.

rPF −Q = div (f) .

Hence we showed that any closed point Q ∈ VF is rational equivalent to a multiple of PF for
any field extension F/k. Thus, V has universally trivial Chow group of zero-cycles.

Using this observation we prove that certain algebraic schemes have universally trivial Chow
group of zero-cycles. The considered algebraic schemes will come up in the proof of Proposi-
tion 4.1 when using Lemma 4.2.

Lemma 4.6. Let k0 be an algebraically closed field of characteristic different from 2. We define
the following reduced algebraic schemes

D1 := {x22 − 2x23 = x20x5 + x21x4 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5)) = 0} ⊂ P5

k0 ,

D2 := {c0 = x3 = x4x5 = 0} ⊂ P6
k0 ,

Sred
0 := {c0 = x6 = x4x5 = 0} ⊂ P6

k0 ,

where c0 ∈ k0[x0, . . . , x6] is defined as in Definition 3.1 or Definition 3.11. Then D1, D2, and Sred
0

have universally trivial Chow group of zero-cycles.

Note that the polynomials c0 ∈ k0[x0, . . . , x6] in Definition 3.1 and Definition 3.11 are the
same, i.e. a distinction between characteristic 3 and characteristic char k0 ̸= 3 is not necessary.

Proof. As k0 is algebraically closed, there exists a square root
√
−1 of −1. The transformation

x5 7→
√
−1y5, x4 7→ y4 + y5, xi 7→ yi for i ∈ {0, 1, 2, 3}
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induces an isomorphism D1
∼= D′

1 where D′
1 is the algebraic subscheme of P5

k0
given by{√

−1y20y5 + y21y4 + y21y5 + y3(y
2
3 + y24 + 2y4y5 − 2y3(y4 + y5 +

√
−1y5)) = y22 − 2y23 = 0

}
.

The projection from the point P = [0 : · · · : 0 : 1] ∈ P5
k0

induces a birational map

D′
1

∼
99K D′′

1 := {y22 − 2y23 = 0} ⊂ P4
k0 .

Let W :=
{√

−1y20 + y21 + 2y3y4 − 2(1 +
√
−1)y23 = 0

}
⊂ D′

1 and let U := D′
1 \ W be the

complement. Let z ∈ Z0(D
′
1) be any zero-cycle. Obviously, we can write

z = z1 + z2 ∈ Z0(D
′
1)

for some z1 ∈ Z0(W ) and z2 ∈ Z0(U). Note that W is a cone over the k0-rational point
P = [0 : · · · : 0 : 1] ∈ P5

k0
. Thus W has universally trivial Chow group of zero-cycles by

Lemma 4.5, in particular z1 = k ·P ∈ CH0(W ) for some k ∈ Z. Similarly, D′′
1 is a cone over the

k0-rational point [1 : 0 : 0 : 0 : 0] ∈ P4
k0

and thus has universally trivial Chow group of zero-cycles
by Lemma 4.5. Since U is isomorphic to an open subvariety of D′′

1 , U has also universally trivial
Chow group of zero-cycles, by the localization exact sequence. Thus we can write

z2 = l · P ′ ∈ CH0(U)

for some l ∈ Z where P ′ = [1 : 0 : · · · : 0] ∈ P5
k0
. As the lines

[s : t] 7→ [s : 0 : 0 : 0 : t : 0], [u : v] 7→ [0 : 0 : 0 : 0 : u : v] (4.3)

are contained in D′
1, the k0-rational points P and P ′ are linearly equivalent in D′

1 and the
previous discussion shows that

z = (k + l) · P ∈ CH0(D
′
1).

Since the lines in (4.3) are defined over k0, the argument works also after some field extension.
Thus, D′

1 and therefore also D1
∼= D′

1 have universally trivial Chow groups of zero-cycles.

Consider next

D2 = {x3 = x4x5 = x20x5 + x21x4 + x22x6} = D1
2 ∪D2

2

where D1
2 = {x3 = x5 = x21x4+x

2
2x6}, D2

2 = {x3 = x4 = x20x5+x
2
2x6} ⊂ P6

k0
are two subvarieties

which are isomorphic to each other. The varieties D1
2, D

2
2 ⊂ P6

k0
, and their intersection

D1
2 ∩D2

2 = {x3 = x4 = x5 = x22x6} ⊂ P6
k0

are cones with a k0-rational point as vertex. Thus, we see from Lemma 4.5 and the Mayer-
Vietoris exact sequence for Chow groups [Ful98, Example 1.3.1 (c)]

CH0(D
1
2 ∩D2

2) −→ CH0(D
1
2)⊕ CH0(D

2
2) −→ CH0(D2) −→ 0

that D2 has universally trivial Chow group of zero-cycles.

Lastly, Sred
0 = {x20x5 + x21x4 + x3(x

2
3 + x24 + x25 − 2x3(x4 + x5)) = x4x5 = 0} ⊂ P5

k0
is a cone

over the k0-rational point [0 : 0 : 1 : 0 : 0 : 0] and thus has universally trivial Chow group of
zero-cycles by Lemma 4.5.
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4.2 A cohomological obstruction

Proposition 4.7. Let k0 be an algebraically closed field of characteristic different from 2 and
let

Z0 = {x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)) = x3x6 − x4x5 = 0} ⊂ P6

k0 .

Then the class δZ0 ∈ CH0(Z0,k0(Z0)) is non-zero in the quotient

0 ̸= [δZ0 ] ∈
CH0

(
Z0,k0(Z0)

)
/2

CH0(Z0)/2
.

The proof of this proposition follows mainly the argument by Skauli [Ska22], which uses ideas
of Schreieder in [Sch19b]. The main idea is to compute the Merkurjev pairing of δZ0 with some
non-zero unramified class α. This pairing will give a non-zero element in some étale cohomology.
On the other hand, if [δZ0 ] = 0 in the quotient, then it turns out that the pairing has to be
also zero which gives us a contradiction. This approach has several technical difficulties, mostly
caused by the the singularities of Z0. These issues have been resolved in [Sch19b].

We recall the computations from [Ska22]. Let Z0 be defined as in Proposition 4.7 and let

Q := {x3x6 − x4x5 = 0} ⊂ P6
k0

be the cone over P1
k0

× P1
k0

embedded in P3
k0

∼= {x0 = x1 = x2 = 0} ⊂ P6
k0

with vertex plane
{x3 = x4 = x5 = x6 = 0} ⊂ P6

k0
. Recall that the Segre embedding of P1

k0
× P1

k0
is given by

P1
k0 × P1

k0 −→ P3
k0 , ([z0 : z1], [z2 : z3]) 7→ [z0z2 : z0z3 : z1z2 : z1z3].

Thus, we get a rational map

φ : Q 99K P1
k0 × P1

k0 , [x0 : · · · : x6] 7→ ([x3 : x5], [x3 : x4]).

Lemma 4.8. The rational map φ induces a morphism

Q′ := BlDQ −→ P1
k0 × P1

k0

where D := {x3 = x4 = x5 = x6 = 0} ⊂ Q is the vertex plane of the cone Q over P1
k0

× P1
k0
.

Restricting this morphism to the strict transform of Z0 via the morphism BlDQ → Q yields a
surjective morphism

f0 : Z
′
0 := BlD∩Z0 Z0 −→ P1

k0 × P1
k0 .

Moreover, the generic fiber of f0 is smooth and the singular locus does not dominate P1
k0

× P1
k0
.

Proof. Define

Q′ := BlDQ := {y3y6 − y4y5 = xiyj − xjyi = 0, for i, j ∈ {3, 4, 5, 6}} ⊂ P6
k0 × P3

k0 ,

where x0, x1, . . . , x6 are the coordinates of P6
k0

and y3, . . . , y6 are the coordinates of P3
k0
. Then

it is immediate to check that the projection onto the first factor

pr1 : BlDQ −→ Q

is the blow-up of Q in D. Moreover, the projection onto the second factor

pr2 : Q
′ −→ P1

k0 × P1
k0
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is induced by φ. The strict transform Z ′
0 of Z0 is given in the chart {yi ̸= 0} ⊂ Q′ (i ∈ {3, 4, 5, 6})

by {
x20
y5
yi

+ x21
y4
yi

+ x22
y6
yi

+ x2i

((
y3
yi

)2

+

(
y4
yi

)2

+

(
y5
yi

)2

− 2
y3
yi

(
y4
yi

+
y5
yi

+
y6
yi

))
= 0

}
,

(4.4)
and the exceptional divisor is given by

E :=

{
x20
y5
yi

+ x21
y4
yi

+ x22
y6
yi

= xi = 0

}
. (4.5)

The projection onto the second factor pr2 induces a morphism

f0 : Z
′
0 −→ P1

k0 × P1
k0 .

Using (4.4), the variety Z ′
0 is given in the chart {y3 ̸= 0} by{

x20
y5
y3

+ x21
y4
y3

+ x22
y4y5
y23

+ x23

(
1 +

(
y4
y3

)2

+

(
y5
y3

)2

− 2

(
y4
y3

+
y5
y3

+
y4y5
y23

))
= 0

}
⊂ P3

k0×A2
k0 ,

(4.6)
and the restriction of the morphism f0 to that chart is

Z ′
0 −→ A1

k0 × A1
k0 ⊂ P1

k0 × P1
k0 ,

(
[x0 : x1 : x2 : x3],

(
y4
y3
,
y5
y3

))
7→
([

1 :
y5
y3

]
,

[
1 :

y4
y3

])
. (4.7)

Similarly, the variety Z ′
0 restricted to the chart {y4 ̸= 0} is isomorphic to{

x20
y3y6
y24

+ x21 + x22
y6
y4

+ x24

((
y3
y4

)2

+ 1 +

(
y3y6
y24

)2

− 2
y3
y4

(
1 +

y3y6
y24

+
y6
y4

))
= 0

}
⊂ P3

k0×A2
k0 ,

and the morphism f0 is in that chart given by

Z ′
0 −→ A1

k0 × A1
k0 ⊂ P1

k0 × P1
k0 ,

(
[x0 : x1 : x2 : x4],

(
y3
y4
,
y6
y4

))
7→
([

y6
y4

: 1

]
,

[
y3
y4

: 1

])
. (4.8)

Hence, we directly see that f0 is surjective and the generic fiber of f0 is smooth because it is a
Fermat quadric over the function field of the generic point of P1

k0
× P1

k0
. The statement about

the singular locus follows from [Ska22, Remark 3.6]. For the convenience of the reader we give
an alternative proof: We claim that every singular point of Z ′

0 satisfies

y3y6 = y4y5 = 0.

Then, by the local description of f0 in (4.7) and (4.8) the image of the singular locus under
the morphism f0 is contained in the union of the coordinate axis, i.e. a proper closed subset of
P1
k0

× P1
k0
.

To prove the claim it clearly suffices to show that the singular locus of Z ′
0 in the chart

{y3 ̸= 0} is contained in y4y5 = 0 because we can assume y3 = 0 outside of this chart and then
y4y5 = 0 follows from the definition of Q′. Assume without loss of generality y3 = 1. Then (4.6)
reads

Z ′
0
∼=
{
x20y5 + x21y4 + x22y4y5 + x23

(
1 + y24 + y25 − 2 (y4 + y5 + y4y5)

)
= 0
}
⊂ P3

k0 × A2
k0 .
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For any singular point the Jacobian(
2x0y5 2x1y4 2x2y4y5 2x3 (. . . ) x21 + y5x

2
2 + x23(2y4 − 2y5 − 2) x20 + y4x

2
2 + x23(2y5 − 2y4 − 2)

)
has to vanish. Assume that x0 = x1 = x2 = 0 and thus x3 ̸= 0 because x0, x1, x2, and x3 are
projective coordinates. Then the vanishing of the last two components of the Jacobian yields a
contradiction

0 = (2y4 − 2y5 − 2) + (2y5 − 2y4 − 2) = −4 ̸= 0.

Hence, one of the coordinates x0, x1, and x2 is non-zero which immediately implies y4y5 = 0.

The non-zero unramified cohomology class comes from a quadric surface bundle studied by
Hassett, Pirutka and Tschinkel [HPT18, Example 8]:

Proposition 4.9. The variety Z ′
0 ⊂ BlDQ is birational to the following quadric surface bundle

Q := {yzs2 + xzt2 + xyu2 + (x2 + y2 + z2 − 2(xy + xz + yz))v2 = 0} ⊂ P2
k0 × P3

k0 .

Hence, there exists a non-trivial class

0 ̸= α = f∗0

(
z1
z0
,
y1
y0

)
∈ H2

nr (k0(Z
′
0)/k0,Z/2) .

Proof. The ambient spaces BlDQ and P2
k0

× P3
k0

are birational, e.g.

P2
k0 × P3

k0 99K BlDQ, [x : y : z], [s : t : u : v] 7→
[
s : t : u : v : v

x

z
: v
y

z
: v
xy

z

]
,
[
z : x : y :

xy

z

]
defines a birational map. Moreover, the birational map is an isomorphism in the charts z = 1
and y3 = 1. Setting now z = 1 in the defining equation of Q and comparing the result with
(4.6), we immediately see that Q and Z ′

0 are birational. Thus the unramified cohomology groups
are isomorphic. Schreieder observed in [Sch19b, Proposition 9.6] that the class

pr∗1

(x
z
,
y

z

)
̸= 0 ∈ H2

nr (k0(Q)/k0,Z/2))

is non-trivial which was proven in [HPT18, Proposition 11]. Following the birational maps we
thus see that

α = f∗
(
z1
z0
,
y1
y0

)
̸= 0 ∈ H2

nr (k0(Z0)/k0,Z/2) .

This finishes the proof of the proposition.

The explicit description of the unramified cohomology class α allows us to obtain the following
vanishing result.

Lemma 4.10. Let E ⊂ Z ′
0 be the exceptional divisor and let α be the unramified class from

Proposition 4.9. Let F/k0 be some finitely generated field extension. Then for any closed point
e in the smooth locus of EF

αF |e = 0 ∈ H2(κ(e),Z/2).

Proof. Let ηEF
∈ EF ⊂ Z ′

0,F denote the generic point of EF . Recall that α = f∗0

(
z1
z0
, y1y0

)
where

f0 : Z
′
0 → P1

k0
× P1

k0
is defined as in Lemma 4.8. Since

(
z1
z0
, y1y0

)
corresponds to the quadratic

form 〈
1,
z1
z0
,
y1
y0
,
z1
z0

y1
y0

〉
∼=
〈
1,−z1

z0
,−y1

y0
,
z1
z0

y1
y0

〉
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over k0(P1
k0
×P1

k0
) = k0

(
y1
y0
, z1z0

)
, the restriction of αF to the generic point of EF corresponds to

the same quadratic form over F (EF ). To be more precise: As fEF
: EF → P1

F ×P1
F is dominant

and y4
y3
, y5y3 are mapped to z1

z0
and y1

y0
respectively, αF |ηEF

corresponds to the quadratic form〈
1,
y5
y3
,
y4
y3
,
y5
y3

y4
y3

〉
on F (EF ). This quadratic form is isotropic over F (EF ) because the equation for i = 3 in (4.5)

is a subform of
〈
1, y5y3 ,

y4
y3
, y5y3

y4
y3

〉
. Thus, the restriction αF |ηEF

vanishes in H2(F (EF ),Z/2) by

Theorem 2.18. Since H2(OEF ,e,Z/2) → H2(F (EF ),Z/2) is injective by Theorem 2.26 (a), the
restriction αF |e ∈ H2(κ(e),Z/2) of α to the regular point e of EF vanishes.

Proof of Proposition 4.7. Let

Z0 = {x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)) = x3x6 − x4x5 = 0} ⊂ P6

k0

and let δZ0 ∈ CH0(Z0,k0(Z0)) be the class of the diagonal. We aim to show that

0 ̸= [δZ0 ] ∈
CH0

(
Z0,k0(Z0)

)
/2

CH0(Z0)/2
.

To abbreviate some notation let us define K := k0(Z0) and k := k0. For a contradiction assume
that

δZ0 = 2z1 + z2,K ∈ CH0(Z0,K) (4.9)

where z1 ∈ CH0(Z0,K) and z2 ∈ CH0(Z0) are some zero-cycles. Recall that there exists a
non-trivial element α ∈ H2

nr(k(Z0)/k,Z/2) which was constructed by [HPT18] (see also Proposi-
tion 4.9). Since Z ′

0 is the blow-up of Z0 in some subvariety D∩Z0 (see Lemma 4.8), the varieties
Z ′
0 and Z0 are birational, i.e.

α ∈ H2
nr(k(Z0)/k,Z/2) = H2

nr(k(Z
′
0)/k,Z/2).

We denote the blow-down morphism by ρ0 : Z
′
0 → Z0 and the exceptional divisor by E. As

already mentioned, the main idea for this proof is to compute the Merkurjev pairing ⟨δZ0 , α⟩
and use (4.9) to find a contradiction. Since Z0 is not smooth, the Merkurjev pairing might
not factor through rational equivalence. Therefore we need a smooth ”model” for Z0 which we
construct by using an alteration. (If resolution of singularities would be known also in positive
characteristic, the argument becomes slightly easier.) Let τ0 : Z

′′
0 → Z ′

0 be an alteration of odd
degree which exists by work of de Jong [deJ96] and Gabber, see e.g. [IT14]. Since k0 is perfect,
Z ′′
0 is smooth. Then, we obtain the following diagram

Z ′′
0 Z ′

0 Z0

P1
k × P1

k.

τ0 ρ0

f0

Extending the base field to K/k, the diagram reads

Z ′′
0,K Z ′

0,K Z0,K ,
τ ρ

where τ and ρ denote the base-change of the morphism τ0 and ρ0, respectively. Note that τ is
again an alteration of odd degree.
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Next we need to pull-back the zero-cycle (4.9) and the unramified cohomology class to Z ′′
0,K

and Z ′′
0 , respectively. Let us start with the latter one: Since, τ0 is surjective it maps the generic

point of Z ′′
0 to the generic point of Z ′

0. Thus τ0 induces a morphism

τ0 : Spec k(Z ′′
0 ) −→ Spec k(Z ′

0), (4.10)

which we also denote by τ0. We apply Proposition 2.24 (a) to obtain an element

τ∗0α ∈ H2
nr

(
k(Z ′′

0 )/k,Z/2
)
.

Note that (4.10) is a finite morphism, as τ0 is generically finite. Thus there exists also a well-
defined push-forward morphism

(τ0)∗ : H
2
nr(k(Z

′′
0 )/k,Z/2) −→ H2

nr(k(Z
′
0)/k,Z/2)

by Proposition 2.24 (b). Next we pull-back the zero-cycle δZ0 from CH0(Z0,K) to CH0(Z
′′
0,K):

Since ρ : Z ′
0,K → Z0,K is proper, there exists a well-defined push-forward map on the level of

Chow groups. Restricting this push-forward map to the open subvariety Z ′
0,K \ EK gives an

isomorphism

CH0

(
Z ′
0,K \ EK

) ∼=−→ CH0 (Z0,K \ (Z0,K ∩DK)) ,

as the map on varieties is an isomorphism. Using the localization exact sequence for Chow
groups (see e.g. [Ful98, Proposition 1.8]), we find the following commutative diagram

CH0(EK) CH0(Z
′
0,K) CH0(Z

′
0,K \ EK)

CH0(Z0,K) CH0(Z0,K \ (Z0,K ∩DK))).

ρ∗ ∼=

Thus, restricting the class (4.9) to the open subvariety Z0,K \ (Z0,K ∩DK) and pulling it back
via ρ, we find by the above diagram that

δZ′
0
= 2z′1 + z′2,K + z′3 ∈ CH0(Z

′
0,K) (4.11)

for some zero-cycles z′1 ∈ CH0(Z
′
0,K), z′2 ∈ CH0(Z

′
0) and a zero-cycle z′3 supported on EK .

Consider the pull-back of (4.11) along τ . More precisely, if we restrict τ to the preimage of
the smooth locus, there exists a well-defined pull-back map on the level of Chow groups (see
[Ful98, Section 8.1]). Thus, by the localization exact sequence ([Ful98, Proposition 1.8]) we
obtain the following diagram

CH0

(
τ−1

((
Z ′
0,K

)sing))
CH0

(
Z ′′
0,K

)
CH0

(
τ−1

((
Z ′
0,K

)sm))

CH0

(
Z ′
0,K

)
CH0

((
Z ′
0,K

)sm)
.

τ∗

By restricting (4.11) to the smooth locus and pulling back the zero-cycle along τ we find that

δτ = 2z′′1 + z′′2,K + z′′3 + z′′4 ∈ CH0(Z
′′
0,K) (4.12)

where δτ is the zero-cycle on Z
′′
0,K induced by the graph of τ , z′′4 is supported on τ−1

((
Z ′
0,K

)sing)
,

z′′3 is supported on τ−1
(
EK ∩

(
Z ′
0,K

)sm)
, z′′2 ∈ CH0(Z

′′
0 ), and z

′′
1 ∈ CH0(Z

′′
0,K).
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Lastly, we compute the Merkurjev pairing of the cycle (4.12) with τ∗0α. Let us compute first

⟨δτ , τ∗0α⟩ ∈ H2(K,Z/2).

Recall that the graph Γτ is isomorphic to Z ′′
0 , so the generic point ηΓτ of the graph Γτ which

represents the cycles δτ has function field isomorphic to Z ′′
0 and the natural morphism

Spec k(Z ′′
0 ) −→ SpecK = Spec k(Z ′

0)

is the same morphism as (4.10). By construction of the Merkurjev pairing (2.7),

⟨δτ , τ∗0α⟩ = (τ0)∗

(
(τ∗0α)K |ηΓτ

)
.

Since, the composition of the base extension by K and restriction to the generic point is the
identity, we obtain by Proposition 2.24 (b)

⟨δτ , τ∗0α⟩ = (τ0)∗(τ0)
∗α = deg τ0 · α ∈ H2(k(Z ′

0),Z/2) = H2(K,Z/2).

As deg τ0 is odd and α ̸= 0 ∈ H2(K,Z/2) by Proposition 4.9, the pairing ⟨δτ , τ∗0α⟩ is non-zero.
We claim now that〈

2z′′1 + z′′2,K + z′′3 + z′′4 , τ
∗
0α
〉
=
〈
z′′2,K + z′′3 + z′′4 , τ

∗
0α
〉
= 0 ∈ H2(K,Z/2)

which yields the contradiction

0 ̸= ⟨δτ , τ∗0α⟩ = 0 ∈ H2(K,Z/2),

i.e. our initial assumption (4.9) is false and this proves Proposition 4.7.

It is left to show the claim: Since the Merkurjev pairing is linear in the first argument,
it suffices to prove that each summand of the zero-cycle pairs zero with τ∗0α. The pairing〈
z′′2,K , τ

∗
0α
〉

is the pull-back of the pairing ⟨z′′2 , τ∗0α⟩ via the natural morphism ψ : SpecK →
Spec k, see Lemma 2.31 (a). Since k is algebraically closed, all higher étale cohomology of Spec k
vanish, in particular H2(k,Z/2) = 0. Hence,〈

z′′2,K , τ
∗
0α
〉
= ψ∗ 〈z′′2 , τ∗0α〉 = ψ∗0 = 0.

Next, we show that ⟨z′′3 , τ∗0α⟩ = 0. Recall that the zero-cycle z′′3 is supported on τ−1((Z ′
0,K)sm ∩

EK). Using the local descriptions of E and Z ′
0, see (4.4) and (4.5), we see that (Z ′

0,K)sm∩EK ⊂
Esm
K . Hence it suffices to check that the pairing ⟨z′′3 , τ∗0α⟩ vanishes for a single closed point z′′3

which is mapped via τ to a regular point z′3 of EK . Lemma 2.31 (b) and Lemma 4.10 imply〈
z′′3 , τ

∗
0α
〉
=
〈
z′3, α

〉
= 0 ∈ H2(K,Z/2).

Lastly we check that ⟨z′′4 , τ∗0α⟩ = 0. Recall that z′′4 is supported on τ−1
(
(Z ′

0)
sing
)
. By Lemma 4.8,

the singular locus does not dominate P1
K ×P1

K . Thus, we can apply Theorem 2.32 and conclude
that 〈

z′′4 , τ
∗
0α
〉
= 0.

This proves the claim and thus Proposition 4.7.
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4.3 Proof of the main result

Proof of Proposition 4.1: Let us recall what we want to prove: Let k0 be an algebraically closed
field of characteristic different from 2 and let k := k0(u, v, w) be the algebraic closure of a
purely transcendental extension of k0. Moreover, let R = k[[t]] be the formal power series in one
variable over k. We consider the strictly semi-stable model

X̃ −→ SpecR

from (3.10), or (3.25) if char k = 3. Recall that the special fibre X̃k of X̃ → SpecR has three
irreducible components

Ỹ1 ∪ PZ ∪ Y2
where Ỹ1 = BlS Y1 is the blow-up of Y1 in the singular locus S of X and PZ is a P1

k-bundle over
Z = Y1∩Y2, see also (3.10) and (3.25). Moreover, let A := OX̃ ,PZ

be the local ring at the generic
point of PZ with residue field k(PZ). We want to show that for any zero-cycle z ∈ CH0(PZ) the
element

δPZ
− zk(PZ) ∈ CH0(PZ × k(PZ)) (4.13)

does not lie in the image of the obstruction map

ΦX̃A,PZ
: CH1(X̃k ×k k(PZ)) −→ CH0(PZ ×k k(PZ))

modulo 2 where ΦX̃A,PZ
is defined as in (2.4).

Assume that (4.13) is contained in the image of ΦX̃A,PZ
modulo 2. The idea of the proof is

to simplify the Chow groups in the obstruction map as much as possible and conclude that

δZ0 ∈ Im (CH0(Z0) −→ CH0(Z0 × k0(Z0))) mod 2. (4.14)

which contradicts Proposition 4.7.
Step 0. Clearly,

CH1(Ỹ1 × k(PZ))⊕ CH1(PZ × k(PZ))⊕ CH1(Y2 × k(PZ)) −↠ CH1(X̃k × k(PZ)),

where the map is given by the push-forward along the corresponding inclusions of varieties. Let
us consider the contribution of CH1(PZ × k(PZ)). We know that PZ → Z is a P1

k-bundle (see
Lemma 3.9 and Lemma 3.14 respectively) and Z is smooth, so there is a canonical isomorphism

CH0(Z × k(PZ))⊕ CH1(Z × k(PZ))
∼=−→ CH1(PZ × k(PZ)). (4.15)

For the convenience of the reader we quickly describe this map: The map from the first summand
is given by pulling back a zero-cycle via base extension of the flat morphism PZ → Z with
k(PZ). Geometrically, the class of a closed point in Z × k(PZ) is mapped to the class of the
line over that point. The map from the second summand is given by pulling back a one-cycle
via base extension of the flat morphism PZ → Z with k(PZ) and intersecting it with a section
of the P1-bundle PZ × k(PZ) → Z × k(PZ). Combining this description with the concrete
description of the obstruction morphism (2.5) we find that the contribution of CH0(Z × k(PZ))
to the obstruction morphism vanishes modulo 2. Indeed, take a closed point z in Z × k(PZ),
the above description of the isomorphism (4.15) tells us that we take the fiber over this point
which is a P1. By the concrete description of the obstruction morphism (see (2.5)), we then
intersect this line in PZ × k(PZ) with Ỹ1 × k(PZ) and Y2 × k(PZ). These intersection points
are equal to the point z we started with by viewing z as a point in PZ × k(PZ) via the sections
Z×k(PZ) → (Ỹ1∩PZ)×k(PZ) and Z×k(PZ) → (Y2∩PZ)×k(PZ) respectively. Since these two
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intersection points lie in the fiber over z, which is a P1, they are rationally equivalent. Hence,
the image of the CH0(Z × k(PZ)) via the obstruction morphism is zero modulo 2.

Next we discuss the contribution of CH1(Z × k(PZ)). As Z → Y2 ∩ PZ is a section of the
projective bundle PZ → Z and the isomorphism (4.15) is given by pulling back the one-cycle
and intersecting it with a section, we find that any one-cycle of Z × k(PZ) is mapped under
(4.15) to a one-cycle supported on Y2 ∩ PZ . Hence, the contribution of CH1(Z × k(PZ)) to the
obstruction map is absorbed by CH1(Y2 × k(PZ)). After this discussion we thus find that the
image of the obstruction map ΦX̃A,PZ

modulo 2 is contained in

Im
(
CH1(Ỹ1 × k(PZ))⊕ CH1(Y2 × k(PZ)) −→ CH0(PZ × k(PZ))

)
mod 2. (4.16)

Next we take a look at CH1(Ỹ1 × k(PZ)). As blow-ups commute with extension of the base
field, the blow-up formula for Chow groups (see e.g. [Voi03, Theorem 9.27]) yields a canonical
isomorphism

CH1(Y1 × k(PZ))⊕ CH0(S × k(PZ)) ∼= CH1(Ỹ1 × k(PZ)).

Thus we conclude that (4.16) is contained in

Im (CH1(Y1 × k(PZ))⊕ CH1(Y2 × k(PZ))⊕ CH0(S × k(PZ)) −→ CH0(PZ × k(PZ))) mod 2.
(4.17)

Next we will use Fulton’s specialization map to make the Chow groups more accessible. For
this we recall an observation made by Pavic and Schreieder.

Lemma 4.11 ([PS21, Lemma 5.7]). Let B be a discrete valuation ring with fraction field F and
residue field L. Let p : X → SpecB and q : Y → SpecB be proper, flat B-schemes with connected
fibers. Denote by Xη, Yη and X0, Y0 the generic and the special fibers of p, q respectively. Assume
Y0 is integral, i.e. A = OY,Y0 is a discrete valuation ring, and consider the flat proper A-
scheme XA → SpecA, given by base change of p. Then Fulton’s specialization map induces a
specialization map

sp: CHi(Xη ×F F (Yη)) −→ CHi(X0 ×L L(Y0)),

where F and L denote the algebraic closures of F and L, respectively, such that the following
holds:

(1) sp commutes with pushforwards along proper maps and pullbacks along regular embeddings;

(2) If X = Y, then sp(δXη) = δX0, where δXη ∈ CH0(Xη ×F F (Xη)) and δX0 ∈ CH0(X0 ×L

L(X0)) denote the diagonal points.

Recall that we aim to conclude (4.14) from the assumption that (4.13) is contained in the
image of ΦX̃A,PZ

. This is done in the following three steps. In each step we apply Fulton’s
specialization map, see Lemma 4.11, by specializing one parameter u, v, w to 0 in order to
control the Chow groups in (4.17): The first specialization allows us to write the first Chow
group of Y2 as the first Chow group of Y1 and some Chow group of zero-cycles. In the second
step the first Chow group of Y1 will simplify to the first Chow group of some projective space,
which is isomorphic to Z, and again some Chow group of zero-cycles. Lastly the remaining
Chow groups of zero-cycles, namely the two added in the previous steps and the Chow group
of S, specialize in the third and final step to Chow groups of the reduced algebraic schemes in
Lemma 4.6, i.e. are also isomorphic to Z. Thus we will be able to conclude (4.14). The following
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diagram summarizes the strategy in a very informal way:

Y2 Y1 + something,

Y1 P5 + something,

S + something Sred
0 , D1, and D2 from Lemma 4.6.

w→0

v→0

u→0

We start with some general remarks and lay down the details afterwards. Since the specializa-
tion map in Lemma 4.11 commutes with pushforwards along proper maps and pullbacks along
regular embeddings [Ful98, Proposition 20.3], we may compute the specialization of (4.17) by
specializing the involved varieties. The ground field k = k0(u, v, w) will change in each step, but
remains algebraically closed by the construction in Lemma 4.11. To simplify the notation we
denote the ground field in each step by κ which we specify at the beginning of each step. Note
that the varieties in (4.17) depend on u, v, and w. To distinguish the specialized varieties from
each other we denote the parameters as indices, e.g. Z = Zu,v,w. We will omit the parameters
after the specialization to 0. If there might be confusion after specializing all parameters we will
write a 0 as index, e.g. Z0. As a last remark, we try to explicitly write down the specializa-
tion, i.e. write down X and Y from Lemma 4.11. In order to keep the text readable, we omit
the explicit specialization for characteristic 3 and we think of PZ as a trivial P1-bundle over Z
which is technically not correct because PZ is only a locally trivial P1-bundle (see Lemma 3.9
and Lemma 3.14).

Recall that we defined the following polynomials in k[x0, . . . , x7]:

c0 = x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)),

f2 =
3
√
4(x1x2 + x4x5) + x23,

f3 = x30 + x31 + x32 + x33 + x34 + x35,

f̂3 = x30 − x31 + ρx32 − ρx33 + ρ2x34 − ρ2x35,

cu,v,w = c0 + u(x6f2 + f3) + v(f3 + x36) + w(gw + x37),

qv,w = x3x6 − x4x5 + v(x3x7 + f2 + x26) + wfw,

ĉv,w = x36 + vf̂3 + whw,

where ρ ∈ k0 is a primitive third root of unity, see also Definition 3.1.
Step 1. We simplify the contribution of Y2: The ground field κ is k0(u, v) and we want to

specialize w → 0. More precisely, we consider the proper and flat family

Y =
{
cu,v,0 + wgw = x3x6 − x4x5 + v(f2 + x26) + wfw = 0

}
⊂ P6

κ[[w]] × P1
κ[[w]] −→ Specκ[[w]].

Its geometric generic fibre is PZu,v,w and its special fibre is PZu,v . (Recall again that we assume
for simplicity that PZ is a trivial P1-bundle in order to write down the family Y → Spec k[[w]]
more nicely.) The special fibre PZu,v of the family Y → Specκ[[w]] is integral because PZu,v is a
P1-bundle of Zu,v and the latter variety degenerates via v → ∞ to A(viii) from Lemma 3.3 and
is thus smooth and integral. Hence, we can apply Lemma 4.11 to

X = {cu,v,0 + wgw = 0} ⊂ P6
κ[[w]] −→ Specκ[[w]] for Y1,

X =
{
cu,v,0 + w(gw + x37) = qv,0 + wfw = 0

}
⊂ P7

κ[[w]] −→ Specκ[[w]] for Y2,

X = {cu,v,0 + wgw = qv,0 + wfw = ĉv,0 + whw = x7 = 0} ⊂ P7
κ[[w]] −→ Specκ[[w]] for S, and

X = Y −→ Specκ[[w]] for PZ ,
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respectively. We are mostly interested in Y2 as we want to simplify its contribution in the
obstruction, i.e. in (4.17). Note that Y2,u,v is a cone over Y1,u,v ⊂ P6

κ with vertex [0 : · · · : 0 :
1] ∈ P7

κ which is precisely the situation described in Lemma 4.2. The varieties

W = Y1,u,v ⊂ P6
κ, and

D = D2,u,v := {cu,v,0 = x3 = x3x6 − x4x5 + v(f2 + x26) = 0} ⊂ P6
κ

are smooth as they degenerate via v → ∞ to A(vi) and A(x) from Lemma 3.3 respectively. Note
that in characteristic 3 the varieties

W = Y1,u,v ⊂ P6
κ, and

D = D2,u,v :=
{
c
(3)
u,v,0 = x3 = x3x6 − x4x5 + v(f

(3)
2 − x26) = 0

}
⊂ P6

κ

are also smooth as they degenerate to A′
(vi) and A

′
(x) from Lemma 3.13 respectively. Thus, we

can apply Lemma 4.2 with V = Y2,u,v and d = 2 and obtain a surjective homomorphism

CH0(D2,u,v × κ(PZu,v))⊕ CH1(Y1,u,v × κ(PZu,v)) −↠ CH1(Y2,u,v × κ(PZu,v)),

i.e. the specialization of (4.17) is contained in

Im
(
CH1 (Y1,u,v,L1)⊕ CH0 (D2,u,v,L1)⊕ CH0 (Su,v,L1) −→ CH0

(
PZu,v,L1

))
mod 2 (4.18)

where L1 := κ(PZu,v).

Step 2. We simplify the contribution of Y1: The ground field κ is k0(u) and we specialize
v → 0. Consider the proper and flat family

Y =
{
cu,0,0 + v(f3 + x36) = x3x6 − x4x5 + v(f2 + x26) = 0

}
⊂ P6

κ[[v]] × P1
κ[[v]] −→ Specκ[[v]].

The variety PZu,v is the geometric generic fibre of Y → SpecR and the variety PZu is the special
fibre. The latter variety is a P1

κ-bundle over Zu which is integral because its defining equations
are linear in the variable x6. Thus PZu is integral and we can apply Lemma 4.11 to the flat and
proper families

X =
{
c0 + u(x6f2 + f3) + v(f3 + x36) = 0

}
⊂ P6

κ[[v]] −→ Specκ[[v]] for Y1,

X =
{
cu,0,0 + v(f3 + x36) = x3 = x4x5 − v(f2 + x26) = 0

}
⊂ P6

κ[[v]] −→ Specκ[[v]] for D2,

X =
{
cu,0,0+v(f3+x36)=x

3
6+vf̂3=0,

x3x6−x4x5+v(f2+x26)=0

}
⊂ P6

κ[[v]] −→ Specκ[[v]] for S, and

X = Y −→ Specκ[[v]] for PZ ,

respectively. The only interesting specialization is the specialization of Y1: We note that Y1,u is
a cone in P6

κ with vertex [0 : · · · : 0 : 1] ∈ P6
κ. Similar to Step 1 we want to apply Lemma 4.2.

Therefore we need to check that W = P5
κ and D = D1,u ⊂ P6

κ are smooth where D1,u is given by{
x22 − 2x23 + uf2 = x20x5 + x21x4 + x3(x

2
3 + x24 + x25 − 2x3(x4 + x5)) + uf3 = 0

}
⊂ P6

κ.

The projective space W is obviously smooth and D specializes via u → ∞ to A(ix) from

Lemma 3.3. In characteristic 3 we need to replace f2 and f3 in the above definition of D by f
(3)
2

and f
(3)
3 , respectively. The variety D degenerates via v → ∞ then to A′

(ix) from Lemma 3.13,
i.e. D is also smooth in characteristic 3. Applying Lemma 4.2 with V = Y1,u and d = 3 yields
a surjective homomorphism

CH0(D1,u × κ(PZu))⊕ CH1(Pκ(PZu )
) −↠ CH1(Y1,u × κ(PZu)).
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Moreover, CH1(P5
κ(PZu )

) ∼= Z is generated by a line. Without loss of generality we can assume

that the line l is defined over κ. By Lemma 4.2 with κ′ = κ (and the sameW, D, and V as above)
the line l give rise to a one-cycle on Y1,u. The image of that one-cycle under the obstruction
yields a zero-cycle in PZu × κ(PZu) which is defined over κ. Hence, the specialization of (4.18)
is contained in

Im
(
CH0 (PZu)⊕ CH0 (D1,u,L2)⊕ CH0 (D2,u,L2)⊕ CH0 (Su,L2) −→ CH0

(
PZu,L2

))
mod 2

(4.19)
where L2 = κ(PZu).

Step 3. We simplify the remaining Chow groups: The ground field is κ = k0 and we specialize
u→ 0. We consider the proper and flat family

Y = {c0 + u(f3 + x6f2) = x3x6 − x4x5 = 0} ⊂ P6
κ[[u]] × P1

κ[[u]] −→ Specκ[[u]].

The variety PZu is the geometric generic fibre of Y → Specκ[[u]]. The special fibre PZ0 of the
family Y → Specκ[[u]] is a P1-bundle over Z0 which is integral because its defining equation is
linear in x6, i.e. PZ0 is integral and we can apply Lemma 4.11 to

X =
{
x20x5+x

2
1x4+x3(x

2
3+x

2
4+x

2
5−2x3(x4+x5))+uf3=0,

x22−2x23+uf2=0

}
⊂ P6

κ[[u]] −→ Specκ[[u]] for D1,

X = {c0 + u(x6f2 + f3) = x3 = −x4x5 = 0} ⊂ P6
κ[[u]] −→ Specκ[[u]] for D2,

X =
{
c0 + u(x6f2 + f3) = x3x6 − x4x5 = x36 = 0

}
⊂ P6

κ[[u]] −→ Specκ[[u] for S, and

X = Y −→ Specκ[[u]] for PZ ,

respectively. Note that D1,u and D2,u specialize via u → 0 to D1 and D2 from Lemma 4.6,
respectively. Moreover, the algebraic scheme Su specializes via u→ 0 to

S0 = {c0 = x3x6 − x4x5 = x36 = 0} ⊂ P6
κ.

Its reduced scheme is Sred0 from Lemma 4.6. By Lemma 4.6,

D1, D2, and S
red
0

have universally trivial Chow group of zero-cycles. Thus, the specialization of (4.19) is contained
in

Im (CH0(PZ0) −→ CH0(PZ0 × κ(PZ0))) mod 2. (4.20)

Moreover, applying Lemma 4.11 (2) repeatedly to our initial assumption that (4.13) is contained
in (4.17) implies that δPZ0

is contained in (4.20).

Since PZ0 is a P1
k0
-bundle over Z0, the pushforward of zero-cycles yields a canonical isomor-

phism CH0(PZ0)
∼= CH0(Z0). As Chow groups do not change under purely transcendental field

extensions, there is an isomorphism CH0(Z0 × k0(Z0)) ∼= CH0(Z0 × k0(PZ0)). Moreover, the
diagonal point δPZ0

is mapped to the diagonal point δZ0 under the composition

CH0(PZ0 × k0(PZ0))
∼=−→ CH0(Z0 × k0(PZ0))

∼=−→ CH0(Z0 × k0(Z0)).

Hence, we conclude that

δZ0 ∈ Im (CH0(Z0) −→ CH0(Z0 × k0(Z0))) mod 2

which contradicts Proposition 4.7. Thus our initial assumption is wrong and we conclude that
the element δPZ

− zk(PZ) ∈ CH0(PZ × k(PZ)) is not contained in the image of ΦX̃A,PZ
modulo 2

which proves Proposition 4.1.
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Corollary 4.12. The smooth (3, 3) complete intersection

X̃K =
{
cu,v,w = t2ĉv,w + x7qv,w

}
⊂ P7

K

from Lemma 3.9, or from Lemma 3.14 in characteristic 3, does not admit a decomposition of
the diagonal, in particular X̃K is not retract rational.

Proof. Assume that X̃K admits a decomposition of the diagonal. Consider the strictly semi-
stable family X̃ → SpecR from Lemma 3.9, or from Lemma 3.14 in characteristic 3. Recall that
X̃K is its geometric generic fibre and the special fibre X̃k of this family is given by

Ỹ1 ∪ PZ ∪ Y2,

where the varieties are defined as in the above mentioned lemmata. Let A = OX̃,PZ
be the local

ring at the generic point of PZ . Then A/R is an unramified extension of discrete valuation rings.
Thus it follows from Theorem 2.14 (i.e. [PS21, Theorem 4.1]) that the natural morphism

ΦX̃A
: CH1(X̃k ×k k(PZ))/2 −→ Ker

(
CH0(Ỹ1,k(PZ ))/2 ⊕ CH0(PZ,k(PZ ))/2 ⊕ CH0(Y2,k(PZ ))/2

deg−→ Z/2
)
(4.21)

is surjective. Note that for any zero-cycle z ∈ CH0(PZ) of degree 1, the element

δPZ
− zk(PZ) ∈ CH0(PZ × k(PZ))

has degree 0. Thus the image of (4.21) contains this zero-cycle. More precisely, since the
zero-cycle is supported on PZ × k(PZ) it is contained in the image of ΦX̃A,PZ

modulo 2 which

contradicts Proposition 4.1. Hence, X̃K does not admit a decomposition of the diagonal and is
thus not retract rational by Lemma 2.4.

Hence we constructed an example of a smooth (3, 3) complete intersection in P7 which is not
retract rational which implies that a very general (3, 3) complete intersection in P7 is not retract
rational and thus proves Theorem 1.1.

Corollary 4.13. Let k be an uncountable field of characteristic different from 2. A very general
(3, 3) complete intersection in P7

k does not admit a decomposition of the diagonal.

Proof. Let B be the variety parametrizing smooth (3, 3) complete intersection of P7
k, i.e. B is

an open subvariety of P119
k × P119

k . (Note that 119 =
(
10
3

)
− 1.) Let f : Y → B be the family

of smooth (3, 3) complete intersections, i.e. Y is a closed subvariety of B × P7
k. We claim that

it suffices to prove the argument for (uncountable) algebraically closed fields k. Indeed, assume
that the statement holds over algebraically closed fields. If a (3, 3) complete intersection over
a (not necessarily algebraically closed) field k admits a decomposition of the diagonal then its
base change with k also admits a decomposition of the diagonal. Thus the closed point in B
whose fibre admits a decomposition of the diagonal lie in the image of a countable union of
proper closed subsets under the natural morphism

Bk → B,

i.e. is a countable union of proper closed subsets. (Recall that B is a projective variety.) Thus
we can assume without loss of generality that k is algebraically closed. By Corollary 4.12 there
exists a smooth (3, 3) complete intersection in P7

k which does not admit a decomposition of the
diagonal. Hence the statement follows directly from Lemma 2.15 and Theorem 2.16.
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pp. 371–397.

[deF13] Tommaso de Fernex, Birationally rigid hypersurfaces, in: Invent. Math. 192
(2013), pp. 533–566.

[deF16] Tommaso de Fernex, Erratum to: Birationally rigid hypersurfaces, in: Invent.
Math. 203 (2016), pp. 675–680.

[deJ96] Aise Johan de Jong, Smoothness, semi-stability and alterations, in: Publ. Math.
IHES 83 (1996), pp. 51–93.

[EL72] Richard Elman and Tsit Yuen Lam, Pfister Forms and K-Theory of Fields, in:
J. Algebra 23 (1972), pp. 181–213.

[Ful98] William Fulton, Intersection theory, 2nd ed., Springer-Verlag, 1998.

[Har77] Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52,
Springer-Verlag, 1977.

[HPT18] Brendan Hassett, Alena Pirutka, and Yuri Tschinkel, Stable rationality of quadric
surface bundles over surfaces, in: Acta Math. 220.2 (2018), pp. 341–365.

47



48 BIBLIOGRAPHY

[IM71] Vasilii Akejseevich Iskovskikh and Yuri Iwanowitsch Manin, Three-dimensional
quartics and counterexamples to the Lüroth problem, in: Mat. Sb. (N.S.) 86
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smooth case), in: Astérisque 363-364 (2014), pp. 167–212.

[Kol95] János Kollár,Nonrational hypersurfaces, in: J. Amer. Math. Soc. 8 (1995), pp. 241–
249.

[KT19] Maxim Kontsevich and Yuri Tschinkel, Specialization of birational types, in: In-
vent. Math. 217.2 (2019), pp. 415–432.

[Mer08] Alexander Merkurjev, Unramified elements in cycle modules, in: J. London Math.
Soc. 78.1 (2008), pp. 51–64.

[NO22] Johannes Nicaise and John Christian Ottem, Tropical degenerations and stable
rationality, in: Duke Math. J. 171 (2022), pp. 3023–3075.

[NS19] Johannes Nicaise and Evgeny Shinder, The motivic nearby fiber and degenerations
of stable rationality, in: Invent. Math. 217.2 (2019), pp. 377–413.

[PS21] Nebojsa Pavic and Stefan Schreieder, The diagonal of quartic fivefolds, 2021, to
appear in Algebraic Geometry.

[Puh87] Aleksandr Puhklikov, Birational isomorphisms of four-dimensional quintics, in:
Invent. Math. 87.2 (1987), pp. 303–329.

[Puh98] Aleksandr Puhklikov, Birational automorphisms of Fano hypersurfaces, in: In-
vent. Math. 134.2 (1998), pp. 401–426.

[Sch19a] Stefan Schreieder, On the rationality problem for quadric bundles, in: Duke Math.
J. 168 (2019), pp. 187–223.

[Sch19b] Stefan Schreieder, Stably irrational hypersurfaces of small slopes, in: J. Amer.
Math. Soc. 32 (2019), pp. 1171–1199.

[Sch21] Stefan Schreieder, Unramified Cohomology, Algebraic Cycles and Rationality, in:
Rationality of Varieties, ed. by Gavril Farkas, Gerard van der Geer, Mingmin
Shen, and Lenny Taelman, Springer, 2021, pp. 345–388.

[SGA4.2] Michael Artin, Alexander Grothendieck, Bernard Saint-Donat, and Jean-Louis
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Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst
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