
THE DIAGONAL OF (3,3) FIVEFOLDS

JAN LANGE AND BJØRN SKAULI

Abstract. We show that a very general (3,3) complete intersection in P7 over an uncount-
able algebraically closed field of characteristic different from 2 admits no decomposition of the
diagonal, in particular it is not retract rational. This strengthens Nicaise and Ottem’s result
in [NO22] where stable irrationality in characteristic 0 was shown. The main tool is a Chow-
theoretic obstruction which was found by Pavic and Schreieder in [PS23], where quartic fivefolds
are studied.

1. Introduction

The Lüroth problem asks whether rationality and unirationality are equivalent. This holds
for curves and complex surfaces, but in higher dimensions the two notions start to differ. Some
interesting intermediate properties between rational and unirational have therefore been intro-
duced, but the relations between these are not fully understood yet.

Recall that a variety X is rational if it is birational to projective space, and stably rational
if X × Pm is rational for some m. We say that X is retract rational if the identity map of X
factors through some projective space as a rational map, i.e. there exists rational maps f and g
such that the composition

X
f

99K Pn g
99K X

is defined and equal to the identity on a nonempty open set U ⊂ X. Finally, a variety X is
called unirational if there is a dominant map Pn 99K X. There are straightforward implications

rational =⇒ stably rational =⇒ retract rational =⇒ unirational.

Over algebraically closed fields only the first and third implications are known to be strict.
Beauville, Colliot-Thélène, Sansuc, and Swinnerton-Dyer [BCTSSD85] showed the strictness
of the first implication over C. The first counterexample over C to the third implication was
constructed by Artin and Mumford in [AM72]. Over non-closed fields, there are algebraic tori
which are retract rational, but not stably rational. An overview of these can be found in [HY17].
But the problem remains open for algebraically closed fields.

Voisin [Voi15] introduced a cycle-theoretic specialization technique to prove retract irrational-
ity based on the decomposition of the diagonal, (see Section 2.2) and applied it to the very
general quartic double solid. This specialization technique was later generalized and refined by
Colliot-Thélène and Pirutka in [CTP16b] and by Schreieder in [Sch19b]. Totaro ([Tot16]) used
this technique to improve Kollár’s result ([Kol95]) on the irrationality of very general hyper-
surfaces of degree greater than roughly 2

3 of the dimension to stable irrationality. Later on,
Schreieder achieved a logarithmic bound for retract irrationality in [Sch19b]. Beyond hypersur-
faces, rationality of complete intersections has also been studied using the same technique by
e.g. Chatzistamatiou and Levine in [CL17] and Hassett, Pirutka and Tschinkel in [HPT18a].
The latter three authors also used the technique to study how rationality can vary in families
[HPT18b].

In characteristic 0, a different approach was introduced by Nicaise and Shinder [NS19], as
well as Kontsevich and Tschinkel [KT19]. This method is based on motivic integration and the
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weak factorization theorem and provides conditions under which stable rationality is preserved
under specialization. Using this, Nicaise and Ottem [NO22] proved stable irrationality of quartic
fivefolds and complete intersections of two cubics in P7 and also used the results from [Sch19b]
to prove stable irrationality of many other complete intersections.

With this technique, the strongest results typically arise by specializing into a union of several
components such that some of the components intersect in a lower dimensional variety, and this
intersection is known to be stable irrational by some other method. Since this method does not
a priori obstruct retract rationality, it is an interesting question if it can be used to find retract
rational but stably irrational varieties over algebraically closed fields.

In [PS23], Pavic and Schreieder introduce a Chow-theoretic analogue of the motivic method,
where retract rationality can be obstructed by degenerating to a union where the obstruction
to a decomposition of the diagonal, and hence to rationality, lies in the intersection of the
components. Using this technique, they study the very general quartic fivefold and show that
it is also retract irrational. Despite the analogy, the relation between the method in [PS23] and
the one used in [NO22] is unclear, and results obtained by one might not necessarily translate
to the other. Hence it is worthwhile to study to what extent Pavic and Schreieder’s method
applies to the new examples of stably irrational varieties found in [NO22].

In this paper, we study the (3,3) fivefold example from [NO22], i.e. a complete intersection
of two cubics in P7, and apply the method of [PS23] to show that it is also retract irrational.
More precisely, we show the following result.

Theorem 1.1. Let k be an uncountable algebraically closed field of characteristic different from
2. Then the very general (3,3) fivefold over k admits no decomposition of the diagonal, in
particular it is not retract rational.

Over fields of positive characteristic, the rationality of the very general (3,3) fivefold was
previously open. Additionally, we present an explicit example of a retract irrational (3,3) fivefold.

The paper is organized as follows: In Section 2 we recall the Chow-theoretic technique of
Pavic and Schreieder as well as some basic definitions of e.g. decomposition of the diagonal
and specializations. The main result is then proven in Section 3, which is split up in four
parts: First we follow Nicaise and Ottem [NO22, Theorem 7.2] and degenerate the complete
intersection to a union of two components with a carefully chosen intersection. We then follow
the methods in [PS23] to obtain a specialization of our complete intersection to a union of three
components. The components are then simplified using further specializations, letting us apply
the obstruction found in [PS23]. In the third part we combine this with the fact that one of the
three components is chosen to be stably birational to the quadric surface bundle described by
Hassett, Pirutka and Tschinkel in [HPT18b] to obstruct the existence of a decomposition of the
diagonal. Finally, we show that Theorem 1.1 follows from this.

Acknowledgement. The authors are grateful to John Ottem, Nebojsa Pavic and Stefan Schreieder
for suggesting this collaboration and also for their patience in answering questions. The authors
would also like to thank the referee for their careful reading of the paper, and for their help-
ful comments. The first named author received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovations programe under
grant agreement No. 948066 (ERC - StG RationAlgic).

2. Preliminaries

2.1. Conventions and Notations. An algebraic k-scheme is a separated scheme of finite type
over a field k. A k-variety (or variety) is an integral, algebraic k-scheme. Let X be a k-variety.
We denote the function field of X by k(X) and the residue field of a closed point x ∈ X
by κ(x). For a separated scheme X over a ring R and some ring extension A/R we write
XA := X ×A := X ×R A := X ×SpecR SpecA for the base change.
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We denote the Chow group of l-cycles of a k-variety X by CHl(X), which is the quotient of
the free abelian group generated by l-dimensional subvarieties modulo rational equivalence.

A very general point of an irreducible separated scheme is a closed point in the complement
of a countable union of proper closed subsets.

We will write (d1, . . . , dk) n-fold or (d1, . . . , dk) complete intersection for the intersection of
k hypersurfaces in Pn+k of degree d1, . . . , dk.

2.2. Decomposition of the diagonal. We briefly introduce the notion of (Chow-theoretic)
decomposition of the diagonal and its relation to rationality questions.

Let X be a k-variety of dimension n and let ∆X ⊂ X ×k X be the diagonal. We say that X
admits a (Chow-theoretic) decomposition of the diagonal if there exists a zero-cycle z on X and
an n-cycle ZX ⊂ X ×k X, which does not dominate the first factor, such that

[∆X ] = [X ×k z] + [ZX ] ∈ CHn(X ×k X).

Here [·] denotes the class of the cycle in the Chow group. Pulling back the diagonal ∆X via the
natural morphism Xk(X) → X ×k X yields a zero-cycle δX ∈ CH0(Xk(X)). Then X admits a
decomposition of the diagonal if and only if there is an equality

δX = [zk(X)] ∈ CH0(Xk(X)),

for some zero-cycle z on X, see e.g. [Sch21, Lemma 7.3].
Our interest in a decomposition of the diagonal comes from the following lemma, which is not

hard to prove, see e.g. [Sch21, Lemma 7.5].

Lemma 2.1. A retract rational k-variety admits a decomposition of the diagonal.

We say that a proper k-variety X has universally trivial Chow group of zero-cycles (short:
universally trivial CH0) or X is universally CH0-trivial if for any field extension F/k, the degree
map

deg : CH0(XF ) −→ Z
is an isomorphism. From this definition it is obvious that varieties with universally trivial CH0

admit a decomposition of the diagonal. The converse holds for geometrically integral and smooth
k-varieties, see [CTP16b, Proposition 1.4].

2.3. Chow-theoretic obstruction to retract rationality. In this section we recall the con-
structions of the obstruction map from [PS23, Section 3]. Throughout this section R denotes a
discrete valuation ring with residue field k and fraction field K. A proper flat R-scheme X is
called strictly semi-stable if the special fibre Xk = X ×R k is a geometrically reduced simple nor-
mal crossing divisor on X . In other words, the components Yi (i ∈ {1, . . . ,m}) of Xk are smooth
Cartier divisors in X and the scheme-theoretic intersection

⋂
j∈J

Yj is smooth of codimension |J |

or empty for every J ⊂ {1, . . . ,m}.
Definition 2.2 ([PS23, Definition 3.1]). Let ι : Xk ↪→ X and ιi : Yi ↪→ X denote the natural
embeddings. For every i ∈ {1, . . . ,m} define

ΦX ,Yi : CH1(Xk)
ι∗−→ CH1(X )

ι∗i−→ CH0(Yi)

to be the composition of the push-forward along the embedding ι and the intersection with the
Cartier divisor Yi ⊂ X . We denote the direct sum by

ΦX :=
m∑
i=1

ΦX ,Yi : CH1(Xk) −→
m⊕
i=1

CH0(Yi). (2.1)

Although the involved Chow groups depend only on the special fibre Xk, the obstruction map
might a priori depend on the choice of the strictly semi-stable family. We recall the explicit
description of Φ in [PS23, Lemma 3.2], which shows that ΦX in fact depends only on the special
fibre Xk, and not on the total space X .
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Lemma 2.3. With the same notation as in Definition 2.2, let furthermore Yi,j := Yi ∩Yj be the
scheme-theoretic intersection of two components Yi and Yj of the special fibre Xk and denote by
ιi,j : Yi,j → Yj and ιi : Yi → Xk the natural inclusions. Moreover, we write γi|Yj,i

:= ι∗j,iγi for

the restriction of γi ∈ CH1(Yi) to the intersection Yi,j. Then for any γj ∈ CH1(Yj):

ΦX ,Yi

(
(ιj)∗ γj

)
=


(ιj,i)∗

(
γj |Yi,j

)
for j ̸= i,

−
∑
k ̸=j

(ιk,i)∗

(
γj |Yk,j

)
for j = i.

In particular, for γ =
m∑
k=1

(ιk)∗ γk ∈ CH1(Xk) and i ∈ {1, . . . ,m}:

ΦX ,Yi(γ) =
∑
j ̸=i

(ιj,i)∗ γj |Yi,j
−
∑
j ̸=i

(ιj,i)∗ γi|Yj,i
. (2.2)

In [PS23], Pavic and Schreieder make two additional observations about this obstruction map
ΦX , which we also recall here: Firstly, the concrete description of ΦX in (2.2) allows us to
conclude that degΦX (γ) = 0 for all γ ∈ CH1(Xk). Secondly, for any unramified extension
of DVR’s A/R, i.e. R → A injective and local morphism of DVR’s with mR · A = mA, the
base-change XA = X ×R A is a strictly semi-stable A-scheme. Indeed, since A/R is unramified,
the residue field L of A is isomorphic to k ⊗R A, i.e. the special fibre of XA → SpecR is the
base-extension with L of the special fibre Xk of X → SpecR. Thus we get for any unramified
extension A/R with residue field L an obstruction map

ΦXA
: CH1(XL) −→ Ker

(
m⊕
i=1

CH0(Yi,L)
deg−→ Z

)
.

Studying these maps can give an obstruction to the decomposition of the diagonal of the geo-
metric generic fibre.

Theorem 2.4 ([PS23, Theorem 4.1]). Let R be a discrete valuation ring with algebraically closed
residue field k and let X → SpecR be a strictly semi-stable projective R-scheme whose special

fibre Xk =
m⋃
i=1

Yi is a chain of Cartier divisors, i.e. only neighboring components intersect

non-trivially. Assume that the geometric generic fibre of X → SpecR has a decomposition of
the diagonal. Then for any unramified extension A/R of DVR, with induced extension L/k of
residue fields, the natural map

ΦXA
: CH1(XL)/2 −→ Ker

(
m⊕
i=1

CH0(Yi,L)/2
deg−→ Z/2

)

is surjective.

Remark 2.5. If R = k[[t]] is the formal power series in one variable, then Theorem 2.4 can
be reformulated to the following because for every field extension L/k the DVR A = L[[t]] is an
unramified extension of R: If the geometric generic fibre of X → SpecR admits a decomposition
of the diagonal, then the morphism

ΦX : CH1(Xk) −→ Ker

(
m⊕
i=1

CH0(Yi)
deg−→ Z

)

is universally surjective modulo 2.



THE DIAGONAL OF (3,3) FIVEFOLDS 5

2.4. Specializations. We will often use specializations of varieties, or more generally reduced
algebraic schemes, not only to obstruct rationality but also to show that certain varieties are
smooth. We therefore introduce this notion here, following [Sch19a, Section 2.2]. Let Y and
Z be reduced algebraic schemes over a field F and an algebraically closed field k, respectively.
We say that Y specializes (or degenerates) to Z if there exists a DVR R with residue field k
and fraction field K, together with an injection of fields K → F such that the following holds:
There exists a proper, flat morphism X → SpecR of finite type such that Z is isomorphic to its
special fibre Xk = X ×R k and Y is isomorphic to the base change XF = (X ×R K)×K F of the
generic fibre.

For the convenience of the reader and to refer to later, we sketch two well-known arguments.
First we recall that it suffices to check smoothness after some proper specialization.

Remark 2.6. With the above notation, we claim that Y is smooth if Z is smooth. Indeed, since
smoothness is stable under extension of the base field, it suffices to check that the generic fibre
XK is smooth if the special fibre Xk is smooth. But this follows directly from the facts that the
morphism X → SpecR is proper and that being singular is a closed condition. So we find that
it suffices to check smoothness after some proper specialization.

Secondly, we recall the following, see e.g. [Sch19a, Lemma 8].

Lemma 2.7. Let f : X → B be a surjective, proper, and flat morphism of reduced, quasi-
projective algebraic schemes over an algebraically closed field k and assume further that B is
integral. Let 0 ∈ B be a closed point. Then a very general fibre specializes to the fibre X0 over
the point 0 in the above sense.

Proof. A very general fibre of f is abstractly isomorphic to the geometric generic fibre of f , see
e.g. [Via13, Lemma 2.1]. Hence it suffices to show that one very general fibre specializes to X0.
Fix one very general fibre Xb, then a very general point on a curve in B through 0 and b is also
a very general point of B, i.e. we can reduce to the case where B is an (integral) curve. After
passing to the normalization, we can assume further that B is smooth. Thus the local ring OB,0

at 0 ∈ B is an integrally closed Noetherian local ring, i.e. a DVR, proving the lemma. □

By Fulton’s specialization map ([Ful98, §20.3]), having a decomposition of the diagonal be-
haves well with respect to specializations, cf. [CTP16b, Theorem 1.14]. Thus we can prove
Theorem 1.1 by constructing one example of a (3,3) fivefold with no decomposition of the diag-
onal. This is the main point in Section 3. The details on why this suffices to prove Theorem 1.1
can be found at the end of this paper (Corollary 3.22).

2.5. Alterations. For a variety W , an alteration is a smooth variety W̃ with a surjective,
proper and generically finite map to W . By work of de Jong [deJ96], alterations always exist,
also in positive characteristic. Moreover, by work of Gabber (see [IT14]), we can choose the
alteration to have odd degree if the characteristic of the ground field is different from 2.

3. Very general (3,3) fivefolds are irrational

We aim to construct an explicit example of a (3,3) complete intersection in P7, which does not
admit a decomposition of the diagonal. Before going into the details we sketch the construction.
We start with a complete intersection

X = X1 ∩X2 ⊂ P7

of two cubic hypersurfaces X1 and X2. Following [NO22, Theorem 7.2], we specialize X2 into
a union of a hyperplane and a quadric hypersurface in P7. This specialization yields a family
X → Spec k[[t]] with X as the geometric generic fibre. The special fibre of that family is the
union of a cubic hypersurface Y ⊂ P6 and a (2,3) complete intersection Z ⊂ P7 meeting at a
(2,3) fourfold W . This family is not strictly semi-stable because the total space X is singular.
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Moreover, the obstruction to rationality used in [NO22, Theorem 7.2] lies in W and is thus not
seen by the obstruction morphism (2.1). By blowing up one component of the special fibre, we
ensure that the family is semi-stable. We can then blow up W to introduce a top-dimensional
component stably birational to W , which is seen by the obstruction morphism.

We end up with a strictly semi-stable family X̃ → Spec k[[t]]. Its special fibre has three

irreducible components Ỹ , PW and Z. Here Ỹ is the blow-up of Y in the singular locus S of the
total space X and PW is a P1-bundle over W . The details of this construction are presented in
the next section.

We aim to show that the homomorphism

ΦX̃ : CH1(X̃k) −→ Ker
(
CH0(Ỹ )⊕ CH0(PW )⊕ CH0(Z)

deg−→ Z
)

is not universally surjective modulo 2. It then follows from Theorem 2.4 and Remark 2.5 that
the geometric generic fibre of X̃ → SpecR admits no decomposition of the diagonal. Aiming
for a contradiction we assume that the homomorphism is universally surjective modulo 2, in
particular that the zero-cycle

δPW
− zk(PW ) ∈ CH0(PW,k(PW )) (3.1)

is contained in the image of ΦX̃ , basechanged to k(PW ), modulo 2. To find a contradiction we
need to control the image of ΦX̃ , in particular the involved Chow groups. To do this we follow the
approach in [PS23]. The Chow groups are hard to compute, but by using Fulton’s specialization
map (Lemma 3.9) we can specialize further to control the Chow groups. We conclude that if
the zero cycle (3.1) is contained in the image of ΦX̃ modulo 2, then it must also be contained in
the image of the natural homomorphism

CH0(PW )/2 −→ CH0(PW,k(PW ))/2. (3.2)

To obtain the final contradiction, we note that W is chosen to be birational to the quadric
surface bundle studied by Hassett, Pirutka and Tschinkel in [HPT18b] and therefore has a
nonzero unramified cohomology class. By computing the Merkurjev pairing of this class and
the diagonal class δPW

, and comparing it with the pairing with classes in the image of (3.2), we
obtain a contradiction, proving that Φ is not universally surjective.

3.1. A strictly semi-stable family. We construct a strictly semi-stable family as outlined
above. Let k0 be an algebraically closed field of characteristic different from 2, and let

k = k0(α, β, γ) (3.3)

be the algebraic closure of a purely transcendental field extension of transcendence degree 3 over
k0. The parameters α, β and γ allow us to degenerate the involved varieties in order to make the
Chow groups more accessible. To obtain the existence of a non-trivial unramified cohomology
class we need to consider the following two polynomials.

Definition 3.1. We define the following polynomials in k0[x0, . . . , x6]:

c0 = x20x5 + x21x4 + x22x6 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5 + x6)),

q0 = x3x6 − x4x5.

The (2,3)-fourfold W0 given by the vanishing of these two polynomials is precisely the one
studied in [Ska23], and is birational to the quadric surface bundle studied in [HPT18b], see
[Ska23, Corollary 3.8]. Moreover, the second named author showed in [Ska23] that W0 does not
admit a decomposition of the diagonal.

We need to pick the exact equations defining the specialization we use with some care. To
use Theorem 2.4 we need the specialization to be strictly semi-stable, and in particular the
components of the special fibre must be smooth. However, we must also ensure that we can
specialize further afterwards to simplify the Chow groups. Finally, we must take care that even
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after this specialization, we can use what we know about W0 to obtain a contradiction. We
therefore choose polynomials in the following way:

Definition 3.2. Let k be defined as in (3.3). Consider the following polynomials in k[x0, . . . , x7]
with char k ̸= 2:

cα,β,γ := c0 + γ (x6p3 + c3) + βc2 + αc1,

qα,β := q0 + β(x3x7 + q2) + αq1,

fα,β := x36 + βf2 + αf1,

where p3, c3 ∈ k[x0, . . . , x5], c2, f2, q2 ∈ k[x0, . . . , x6], and c1, f1, q1 ∈ k[x0, . . . , x7] are general
polynomials of degree

deg c1 = deg c2 = deg c3 = deg f1 = deg f2 = 3, deg q1 = deg q2 = deg p3 = 2,

i.e. cα,β,γ and fα,β are homogenous polynomials of degree 3 and qα,β is a homogenous polynomial
of degree 2. Addionally we choose them such that the following varieties are smooth:

{c3 = 0} , {c3 = p3 = 0} ⊂ P5,

{c2 = 0} , {c2 = f2 = 0} , {c2 = q2 = 0} , {c2 = q2 = x3 = 0} ⊂ P6,

{c1 = 0} , {c1 = q1 = 0} , {c1 = f1 = 0} , {c1 = q1 = f1 = x7 = 0} ⊂ P7.

Moreover, the generality assumption includes that the varieties

{q1 = 0}, {f1 = 0} ⊂ P7
k are smooth along {c1 = f1 = q1 = x7 = 0} ⊂ P7. (3.4)

Remark 3.3. The existence of such polynomials follows from Bertini’s theorem. Note that the
generality condition (3.4) can be replaced by the stronger condition that {q1 = 0}, {f1 = 0} ⊂ P7

are smooth to make the Bertini-type argument for the existence more immediate.
For completeness, we include a possible specific choice of polyonomials. In char k ̸= 3, we can

pick the following:

p3 :=
3
√
4(x1x2 + x4x5) + x23 ∈ k0[x0, . . . , x5],

c3 := x30 + x31 + x32 + x33 + x34 + x35 ∈ k0[x0, . . . , x5],

c2 := c3 + x36 ∈ k0[x0, . . . , x6],

c1 := p1 + x37 ∈ k0[x0, . . . , x7],

q2 := p3 + x26 ∈ k0[x0, . . . , x6],

f2 := x30 − x31 + ρx32 − ρx33 + ρ2x24 − ρ2x25 ∈ k0[x0, . . . , x5],

where ρ ∈ k0 is a primitive third root of unity and 3
√
4 ∈ k0 is a cube root of 4 and p1, q1, and f1

are general polynomials in k[x0, . . . , x6] such that the hypersurfaces cut out by these polynomials
as well as all their intersections are smooth;

In char k = 3 we can pick,

p3 := x21 + x22 + x23 + x24 + x25 ∈ k0[x0, . . . , x5],

c3 := x30 + x0x
2
1 + x1x

2
2 + x2x

2
4 + x4x

2
5 + x5x

2
3 ∈ k0[x0, . . . , x5],

c2 := c3 + x3x
2
6 ∈ k0[x0, . . . , x6],

c1 := c2 + x6x
2
7 ∈ k0[x0, . . . , x7],

q2 := p3 − x26 ∈ k0[x0, . . . , x6],

q1 := q2 + x27 ∈ k0[x0, . . . , x7],

f2 := x21x2 + x22x4 + x24x5 + x25x3 + x23x6 + x36 ∈ k0[x0, . . . , x6],

f1 := f2 + x26x7 + x37 ∈ k0[x0, . . . , x7].
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Note that with these choices the varieties {q1 = 0} and {f1 = 0} ⊂ P7 are not smooth, but they
satisfy the weaker assumption (3.4).

We construct the model X → Spec k[[t]], inspired by [NO22, Theorem 7.2]. Let R := k[[t]]
and consider the R-scheme

X := {cα,β,γ = tfα,β + x7qα,β = 0} ⊂ P7
R.

The special fibre Xk of X → SpecR has two irreducible components, namely a cubic fivefold
Y := {cα,β,γ = x7 = 0} ⊂ P7

k and a (2,3) complete intersection Z := {cα,β,γ = qα,β = 0} ⊂ P7
k.

We denote their scheme-theoretic intersection by W := Y ∩ Z.

Lemma 3.4. The varieties Y, Z, and W in P7 are smooth. The geometric generic fibre

XK =
{
cα,β,γ = fα,β + t−1x7qα,β = 0

}
⊂ P7

K

of X → SpecR is a smooth (3,3) complete intersection.

Proof. Recall from Remark 2.6 that it suffices to check smoothness after some specialization.
Note that

Y specializes via β → ∞ to {c2 = 0} ⊂ P6,

Z specializes via α → ∞ to {c1 = q1 = 0} ⊂ P7,

W specializes via β → ∞ to {c2 = q2 = 0} ⊂ P6,

XK specializes via t → ∞ and α → ∞ to {c1 = f1 = 0} ⊂ P7.

The varieties on the right hand side are smooth by our choices in Definition 3.2. □

Our current model X → SpecR is proper and flat. Moreover the irreducible components of
the special fibre and their intersections are smooth. However the components of the special fibre
of X → SpecR are not Cartier in X , i.e. X → SpecR is not strictly semi-stable.

Lemma 3.5. The singular locus of the total space X is given by

S := {cα,β,γ = fα,β = qα,β = x7 = t = 0} ⊂ X .

Furthermore, S is smooth and X has ordinary quadratic singularities along S.

Proof. First we show that S is smooth. By definition, S is isomorphic to the variety{
c0 + γ(x6p3 + c3) + βc2 + αc1 = q0 + βq2 + αq1 = x36 + βf2 + αf1 = x7 = 0

}
⊂ P7

k.

We note that S specializes via α → ∞ to {c1 = f1 = q1 = x7 = 0} ⊂ P7 which is smooth by
assumption in Definition 3.2. Hence S is smooth by Remark 2.6.

Next we check that S is indeed the singular locus of X . Recall that the singular locus SingX
of X is given by the vanishing of the defining equations of X as well as all minors of the Jacobian.
The Jacobian of X is given by(

∂0cα,β,γ . . . ∂6cα,β,γ ∂7cα,β,γ 0
t∂0fα,β + x7∂0qα,β . . . t∂6fα,β + x7∂6qα,β t∂7fα,β + qα,β + x7∂7qα,β fα,β

)
. (3.5)

Obviously, the variety S is contained in SingX because the defining equation and the second
row of (3.5) vanish. We show the opposite inclusion: Since the geometric generic fibre XK is
smooth by Lemma 3.4, the singular locus of X is contained in the special fibre. We further note
that fα,β vanishes at every point of the singular locus of X , because {cα,β,γ = 0} ⊂ P7

k is smooth
(as it specializes via α → ∞ to the smooth variety {c1 = 0} ⊂ P7). In particular, we see that
the singular locus is contained in

{cα,β,γ = fα,β = t = x7qα,β = 0} ⊂ X .

Hence it suffices to show under the assumption cα,β,γ = fα,β = t = 0 that

x7 = 0 ⇐⇒ qα,β = 0.
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We start by showing the implication left to right. Note that {cα,β,γ = x7 = 0} ⊂ P7
k is smooth

by Remark 2.6 as it specializes via β → ∞ to the smooth variety {c2 = 0}. Thus, we conclude
that qα,β = 0 as wanted because otherwise (3.5) has rank 2. For the implication right to left,
we note that

{cα,β,γ = qα,β = 0} ⊂ P7
k

is smooth because it specializes via α → ∞ to the smooth variety {c1 = q1 = 0} ⊂ P7. Thus,
x7 has to be equal to 0 as otherwise the Jacobian would have full rank. This shows SingX ⊂ S
and thus S = SingX .

Lastly, we describe the type of the singularities of X . Let P ∈ S be any point, i.e. P is a
singular point of X . The varieties {fα,β = 0}, {qα,β = 0} ⊂ P7

k are smooth along S, because this
holds after the specialization α → ∞ by construction in Definition 3.2. Thus the tangent cone of
{tfα,β +x7qα,β = 0} ⊂ P7

R at P is Zariski locally isomorphic to the tangent cone of the ordinary
quadratic singularity {tx+yz = 0}. Moreover, the tangent cone of {tfα,β +x7qα,β = 0} ⊂ P7

R at
P intersects the tangent space of {cα,β,γ = 0} ⊂ P7

R at P transversely because {cα,β,γ = 0} ⊂ P7
k

is smooth (as it specializes via β → ∞ to the smooth cubic hypersurface {c1 = 0} ⊂ P7). This
concludes the proof of the lemma. □

We obtain a strictly semi-stable model by blowing up one irreducible component of the special
fibre.

Lemma 3.6. The blow-up X ′ := BlY X → SpecR is strictly semi-stable with special fibre Ỹ ∪Z
where Ỹ := BlS Y . Moreover the scheme-theoretic intersection Ỹ ∩ Z is isomorphic to W .

Proof. The family X ′ → SpecR is proper and is flat by [Har77, III. Proposition 9.7]. Locally at a
point of S, X has ordinary quadratic singularities (see Lemma 3.5) and a local computation shows

that the special fibre of X ′ is given by Ỹ ∪Z, where Ỹ = BlS Y . We sketch the computation for the
convenience of the reader: Recall, X = {tf + x7q = c = 0} ⊂ P7

k[[t]] and Y = {t = x7 = 0} ⊂ X ,

where we suppressed the indices for simplicity. The blow-up BlY X is then given as follows:

in the t-chart: {x7 − tx′7 = f + x′7q = c = 0},
in the x7-chart: {t− x7t

′ = t′f + q = c = 0}.
(3.6)

The special fibre {t = 0} consists of the two components {t = x7 = 0} and {t′ = 0}. While the
latter is isomorphic to Z, the former is isomorphic to BlS Y because S = {f = q = 0} ⊂ Y .

Moreover, we find that the scheme-theoretic intersection Ỹ ∩Z = BlS W = W , where the final
equality holds because S ⊂ W is a Cartier divisor. By Lemma 3.4 and Lemma 3.5 Y , Z, W ,
and S are smooth, so all components of the special fibre of X ′ → SpecR and their intersection
are smooth. By construction Ỹ is Cartier and Z ⊂ X ′ is also Cartier, because the special fibre
is Cartier and reduced. □

The obstruction to rationality lies in W , see [NO22, Theorem 7.2]. Hence we need to blow-up
W to obtain a component in the special fibre which is stably birational to W and can be seen
by the obstruction map (2.1). In order to ensure that the model will remain strictly semi-stable,
we perform a 2 : 1 base change first, see also [PS23, Lemma 5.5].

Lemma 3.7. Let X ′′ := X ′ ×R→R
t→t2

R be the 2:1 base change of X ′. The blow-up

X̃ := BlZ X ′′ −→ SpecR (3.7)

is a strictly semi-stable R-scheme with special fibre X̃k = Ỹ ∪PW ∪Z, where PW is a P1-bundle
over W and Ỹ = BlS Y as in Lemma 3.6. The intersections Ỹ ∩ PW and Z ∩ PW are disjoint
sections of the bundle PW → W . The geometric generic fibre

X̃K =
{
cα,β,γ = fα,β + t−2x7qα,β = 0

}
⊂ P7

K

is a smooth (3,3) complete intersection.
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Proof. Recall the local description of X ′ in (3.6). From this, we see that the 2 : 1-base change
X ′′ is given by

in the t-chart: {x7 − t2x′7 = f + x′7q = c = 0},
in the x7-chart: {t2 − x7t

′ = t′f + q = c = 0}.
A similar argument as in the proof of Lemma 3.5 shows that the singular locus of X ′′ is given
by {t′ = t = x7 = 0} ⊂ X ′, i.e. it is the singular locus W of the special fibre. In particular we
see that the 2 : 1 base-change is regular away from W . We note that the component Z ⊂ X ′′ is
given by {t = t′ = 0} in the above local charts. Thus the blow-up BlZ X ′′ is given by

in the t-chart: {x7 − t2x′7 = f + x′7q = c = 0},
in the x7 − t-chart: {t′ − tt̃′ = t− x7t̃

′ = tt̃′f + q = c = 0},
in the x7 − t′-chart: {t− t̃t′ = t′t̃2 − x7 = t′f + q = c = 0}.

We see that the irreducible components of the special fibre are {t = t̃ = 0}, {t̃′ = 0}, and

{x7 = t′ = 0}. Note that the first two components are the strict transform of Ỹ and Z,
respectively. We recognize the last component as a smooth conic bundle PW over W which
admits a section, e.g. by Z ∩PW = {t̃′ = 0} ⊂ PW . Hence PW is a P1-bundle over W as claimed
in the statement.

Since the singularities of X ′′ are ordinary quadratic singularities, the blow-up resolves them.
Hence, X̃ is regular and in particular X̃ → SpecR is strictly semi-stable. The smoothness of
the geometric generic fibre follows from Lemma 3.6. □

3.2. Specialization. In the last section we constructed a strictly semi-stable family X →
SpecR. We aim to show that the obstruction map

ΦX̃ : CH1(X̃k) −→ Ker
(
CH0(Ỹ )⊕ CH0(PW )⊕ CH0(Z)

deg−→ Z
)

is not universally surjective modulo 2. Specifically we try to understand the map

ΦX̃ ,PW
: CH1(X̃k) −→ CH0(PW ) mod 2. (3.8)

From the construction of the strictly semi-stable model X̃ → SpecR in the Section 3.1, we can
make a couple of observations in order to better understand the image of the map. Clearly we
have a surjection,

CH1(Ỹ )⊕ CH1(PW )⊕ CH1(Z) −↠ CH1(X̃k),

The map is given by push-forwards of the corresponding inclusions of varieties. We consider first
the contribution of CH1(PW ). Since PW → W is a P1-bundle by Lemma 3.7 and W is smooth
by Lemma 3.4, there is an isomorphism

CH0(W )⊕ CH1(W ) −→ CH1(PW ). (3.9)

where the map on the first factor is the pull-back along the flat morphism PW → W and the
map on the second factor is the pushforward via a section W → PW of the P1-bundle PW . Since
PW ∩ Z is a section of PW → W , we find that the contribution of CH1(W ) in the obstruction

map (3.8) is contained in the image of CH1(Z) (or CH1(Ỹ )). Moreover, the concrete description
of the obstruction map (2.2) implies that the contribution of CH0(W ) vanishes in (3.8). Indeed,
a closed point w ∈ W is mapped under the isomorphism (3.9) to the line Fw over that point.
By (2.2) the line Fw is mapped via (3.8) to

−[Fw] · [Ỹ ]− [Fw] · [Z] = −2[z].

where z ∈ Fw is any point on the line Fw ⊂ PW and we used that Ỹ ∩ PW and Z ∩ PW are
sections of the P1-bundle PW → W . Thus, the image of ΦX̃ ,PW

modulo 2 is contained in

Im
(
CH1(Ỹ )⊕ CH1(Z) −→ CH0(PW )

)
mod 2.
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Next we take a look at CH1(Ỹ ). Recall that Ỹ = BlS Y where S ⊂ X is the singular locus of
X , see Lemma 3.6. The blow-up formula for Chow groups (see e.g. [Ful98, Theorem 3.3 and
Proposition 6.7 (e)]) yields a canonical isomorphism

CH1(Y )⊕ CH0(S) ∼= CH1(Ỹ ).

Thus we conclude that the image of ΦX̃ ,PW
modulo 2 is contained in

Im (CH1(Y )⊕ CH0(S)⊕ CH1(Z) −→ CH0(PW )) mod 2.

These observations also hold after a field extension L/k, which shows the following.

Lemma 3.8. For any field extension L/k, the base change to L of ΦX̃ ,PW
modulo 2 has image

contained in

Im (CH1(Y ×k L)⊕ CH0(S ×k L)⊕ CH1(Z ×k L) −→ CH0(PW ×k L)) mod 2. (3.10)

The Chow groups of the domain are still hard to describe. The transcendental parameters
α, β, and γ allow us to degenerate the varieties further. Together with Fulton’s specialization
map this will enable us to describe the Chow groups and understand (3.10).

Lemma 3.9 (Fulton’s specialization map; [PS23, Lemma 5.7]). Let B be a discrete valuation
ring with fraction field F and residue field L. Let p : X → SpecB and q : Y → SpecB be proper,
flat B-schemes with connected fibres. Denote by Xη, Yη and X0, Y0 the generic and the special
fibres of p, q respectively. Assume Y0 is integral, i.e. A = OY,Y0 is a discrete valuation ring,
and consider the flat proper A-scheme XA → SpecA, given by base change of p. Then Fulton’s
specialization map induces a specialization map

sp: CHi(Xη ×F F (Yη)) −→ CHi(X0 ×L L(Y0)),

where F and L denote the algebraic closures of F and L, respectively, such that the following
holds:

(1) sp commutes with pushforwards along proper maps and pullbacks along regular embed-
dings;

(2) If X = Y, then sp(δXη) = δX0, where δXη ∈ CH0(Xη ×F F (Xη)) and δX0 ∈ CH0(X0 ×L

L(X0)) denote the diagonal points.

The first item of the lemma ensures that the specialization map sp commutes with the ob-
struction map ΦX̃ , i.e. to understand specializations of ΦX̃ it suffices to understand the spe-
cializations of the involved varieties. To distinguish the varieties from their specializations we
denote by subscripts the transcendental parameters (i.e. α, β, γ) on which the variety depends,
e.g. Z = Zα,β. We omit a parameter after specializing it to zero and denote the scheme obtained
after specializing all transcendental parameters α, β, and γ to 0 with subscript 0.

In the remainder of this section we prove the following result.

Proposition 3.10. Let Φk(PW ) denote the obstruction map ΦX̃ ,PW
modulo 2 where every scheme

is base-changed to the function field k(PW ) of PW , i.e.

Φk(PW ) : CH1(X̃k ×k k(PW )) −→ CH0(PW ×k k(PW )) mod 2.

Then the image of spγ ◦ spβ ◦ spα ◦Φk(PW ) is contained in the image of

CH0(PW0)/2 −→ CH0(PW0 ×k0 k0(PW0))/2

where spi is the specialization obtained by sending i → 0. Moreover, the diagonal point δPW
∈

CH0(PW ×k k(PW )) is sent to the diagonal point δPW0
∈ CH0(PW0 ×k0 k0(PW0)) under these

specializations.
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We sketch the proof first: By Lemma 3.8 the image of Φk(PW ) is contained in

Im (CH1(Y ×k k(PW ))⊕ CH0(S ×k k(PW ))⊕ CH1(Z ×k k(PW )) −→ CH0(PW ×k k(PW ))) mod 2.

The specialization α, β, γ → 0 enables us to simplify the Chow groups as follows: We first
specialize Z to a singular variety which is birational to Y . This allows us to write CH1(Z)
as CH1(Y ) and some CH0. In the second step Y becomes rational, i.e. CH1(Y ) is equal to
CH1(P5) ∼= Z plus some CH0. Lastly the remaining schemes, i.e. S and the two introduced in
the previous two steps, specialize to some schemes with universally trivial CH0. The diagram
below visualizes this strategy in an informal way:

Z Y + something,

Y P5 + something,

S + something something with universally trivial CH0 .

α→0

β→0

γ→0

(3.11)

The following lemma allows us to make the above described simplification. Before stating the
lemma we describe quickly the geometric picture. Consider a variety Z ⊂ Pn which is given as
the scheme-theoretic intersection of degree d hypersurface H with a cone over a smooth variety
Y ⊂ Pn−1 with a k-rational point Q as vertex such that the hypersurface H intersects Q with
multiplicity d − 1. Thus the projection from Q yields a birational map Z 99K Y . By resolving
the birational map we can describe CH1(Z) in terms of CH1(Y ) and CH0 of the exceptional
locus of the map.

Lemma 3.11. Let Y := {F1 = · · · = Fr = 0} ⊂ Pn
κ be a smooth variety over a field κ where

F1, . . . , Fr ∈ κ[x0, . . . , xn] are homogeneous polynomials and r ≥ 0. Let

Z := {F1 = · · · = Fr = g1xn+1 + g0 = 0} ⊂ Pn+1
κ

where gi ∈ k[x0, . . . , xn] are homogeneous polynomials of degree d− i. Assume further that

W := {F1 = · · · = Fr = g1 = g0 = 0} ⊂ Pn
κ

is smooth. Then for any field extension κ′/κ there is a surjective homomorphism

CH0(W ×κ κ
′)⊕ CH1(Y ×κ κ

′) −↠ CH1(Z ×κ κ
′).

Remark 3.12. Our assumption on W and Y implies that Z is smooth away from Q.

Proof. We note first that Z is the scheme-theoretic intersection of the cone CY over Y ⊂ Pn
κ
∼=

{xn+1 = 0} ⊂ Pn+1
κ with vertex Q = [0 : · · · : 0 : 1] ∈ Pn+1

κ and the degree d hypersurfaces
H := {g1xn+1 + g0 = 0} ⊂ Pn+1

κ . Since CY is a cone with vertex Q, the projection from Q
induces a rational map

φ : CY 99K Y.

As H has multiplicity d − 1 at Q, the restriction of φ to Z = CY ∩ H is a birational map
φ|Z : Z 99K Y . Indeed the fibre of φ over some κ-rational point P ∈ Y , different from Q, is
the unique line through P and Q. Since H has multiplicity d− 1 at Q, H intersects this line in
a unique other point which is mapped to P under φ. An explicit computation in affine charts
yields that the map φ|Z is resolved by the isomorphism

BlQ Z
∼=−→ BlW Y.

We sketch the computation for the convenience of the reader: Recall,

Q = {x0 = · · · = xn = 0} ∈ Z ⊂ Pn+1,

i.e. the xi-chart of the blow-up BlQ Z is given by

{xj −Xjxi = F1(X) = · · · = Fr(X) = g1(X)xn+1 + xig0(X) = 0, for j ̸= i, n+ 1}.
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On the other hand, we consider the standard affine charts Ui ⊂ Pn with affine coordinates
Yj =

yj
yi

for j ̸= i. The blow-up of Ui along W ∩ Ui is given by

{F1(Y ) = · · · = Fr(Y ) = g0(Y )T − Sg1(Y ) = 0}.

From this description, we immediately see that BlQ Z and BlW Y are locally isomorphic and thus
isomorphic, as they are birational. Note moreover, the isomorphism is induced by the birational
map φ|Z .

Hence, there is an isomorphism on the level of Chow groups CH1(BlW Y ) ∼= CH1(BlQ Z).
Since W and Y are smooth by assumption, the blow-up formula for Chow groups (see e.g.
[Ful98, Theorem 3.3 and Proposition 6.7 (e)]) yields

CH0(W )⊕ CH1(Y ) ∼= CH1(BlW Y ) ∼= CH1(BlQ Z).

Moreover, the natural pushforward

π∗ : CH1(BlQ Z) −→ CH1(Z)

of the proper morphism π : BlQ Z → Z is surjective, because Q is a point.
Since blow-ups commute with extension of the base field, the above construction also works

after any base extension, i.e. we obtain a surjective homomorphism

CH0(W ×κ κ
′)⊕ CH1(Y ×κ κ

′) −↠ CH1(Z ×κ κ
′),

concluding the proof. □

Remark 3.13. A typical use of Lemma 3.11 involves Y to simply be some projective space,
so CH1(Y ) ≃ Z. In this case we have an alternative viewpoint to Lemma 3.11 through the
localization exact sequence of Chow groups. With notation as in the lemma, let CW be the cone
over W , and define U := Y \W . Since the birational map φ is an isomorphism away from CW

and W respectively, we have short exact sequences, valid over any field extension:

CH1(CW ) −→ CH1(Z) −→ CH1(U) −→ 0

CH1(W ) −→ CH1(Y ) −→ CH1(U) −→ 0

Assume Y = Pn and W contains a line. Then it follows from the bottom sequence that CH0(U)
is trivial, hence CH1(CW ) → CH1(Z) is surjective. Since CW is a cone over W , the complement
of the vertex is an affine bundle over W . It furthermore follows from the formula for CH1 of
an affine bundle ([Ful98, Proposition 1.9]) that there is an isomorphism CH1(CW ) ≃ CH0(W ),
valid over any field extension. In total, this approach gives a surjection CH0(W ) → CH1(Z),
valid over any field extension, just as Lemma 3.11.

Proof of Proposition 3.10. We aim to prove that the image of the base-changed obstruction map

Φk(PW ) : CH1

(
(Xk)α,β,γ ×k k

(
PWα,β,γ

))
−→ CH0

(
PWα,β,γ

×k k
(
PWα,β,γ

))
mod 2

is contained in the image of

CH0 (PW0) −→ CH0 (PW0 ×k0 k0 (PW0)) mod 2, (3.12)

after specializing α, β, and γ to 0. Recall that we noticed in Lemma 3.8 that the image of
Φk(PW ) is contained in the image of the homomorphism

CH1(Yα,β,γ×L0))⊕CH0(Sα,β,γ×L0)⊕CH1(Zα,β,γ×L0) −→ CH0(PWα,β,γ
×L0) mod 2, (3.13)

where L0 := k(PWα,β,γ
) is the function field of the P1-bundle PWα,β,γ

. Thus we need to show that
the image of (3.13) is contained in (3.12) after applying spγ ◦ spβ ◦ spα. This is done by analyzing
each specialization in the following three steps. In order to apply Fulton’s specialization map, i.e.
Lemma 3.9, in each step, we need to check that PW remains integral after specialization. Since
PW is a P1-bundle over W , it suffices to check that W remains integral after each specialization.
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Step 1. We specialize α → 0 to control CH1(Z). Note that cα,β,γ and qα,β,γ specialize to

cβ,γ = c0 + γ(x6p3 + c3) + βc2 ∈ k0(β, γ)[x0, . . . , x6],

qβ,γ = (βx3) · x7 + q0 + βq2 ∈ k0(β, γ)[x0, . . . , x7],
(3.14)

respectively. Hence we find that Wβ,γ = {cβ,γ = qβ,γ = x7 = 0} ⊂ P7 is smooth and in particular
integral, because it specializes to the smooth (2,3) fourfold {c2 = q2 = 0} ⊂ P6. Thus we can
apply Lemma 3.9. Moreover, we see from (3.14) that

Zβ,γ = {(βx3) · x7 + (q0 + βq2) = 0} ∩ CYβ,γ
⊂ P7,

where CYβ,γ
⊂ P7 denotes the cone over Yβ,γ ⊂ P6 with vertex [0 : · · · : 0 : 1], i.e. Zβ,γ is of the

form from Lemma 3.11. It is immediate to check that Yβ,γ and Vβ,γ := {x3 = q0+βq2 = 0} ⊂ P6

are smooth. Thus, Lemma 3.11 yields a surjection

CH1(Yβ,γ ×κ L1)⊕ CH0(Vβ,γ ×κ L1) −↠ CH1(Zβ,γ ×κ L1),

where κ := k0(β, γ) and L1 := κ(PWβ,γ
). Hence, by applying Lemma 3.9 we find that the image

of spα applied to (3.13) is contained in the image of

CH1(Yβ,γ ×κ L1)⊕CH0(Sβ,γ ×κ L1)⊕CH0(Vβ,γ ×κ L1) −→ CH0(PWβ,γ
×κ L1) mod 2. (3.15)

Step 2. Y specializes to a cubic hypersurface with an ordinary double point via β → 0, so Y
becomes rational. Note that after applying β → 0, cβ,γ and qβ,γ become

cγ = (x22 − 2x23 + γp3) · x6 + x20x5 + x21x4 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5)) + γc3,

qγ = q0 = x3x6 − x4x5,
(3.16)

in k0(γ)[x0, . . . , x6]. We see that Wγ = {cγ = qγ = 0} ⊂ P6 is integral, i.e. we can apply
Lemma 3.9. Furthermore, we see from (3.16) that

Yγ = {cγ = 0} ⊂ P6

has an ordinary double point singularity at [0 : · · · : 0 : 1], i.e. Yγ is rational. We aim to apply
Lemma 3.11 again. Note that

Yγ = {(γp3) · x6 + (c0 + γc3) = 0} ∩ P6 = {(γp3) · x6 + (c0 + γc3) = 0} ∩ CP5 ⊂ P6

where we view CP5 = P6 as the cone over the hyperplane {x6 = 0} with vertex [0 : · · · : 0 : 1].
It is immediate that P5 and Uγ := {p3 = c0 + γc3 = 0} ⊂ P5 are smooth. Thus, Lemma 3.11
yields a surjection

Z⊕ CH0(Uγ ×κ L2) ∼= CH1(P5
L2
)⊕ CH0(Uγ ×κ L2) −↠ CH1(Yγ ×κ L2),

where κ = k0(γ) and L2 = κ(PWγ ). Moreover, we used that CH1 of projective space is generated
by a line, i.e. isomorphic to Z. Since the line can be choosen to be defined over κ, we find that
the image of the map CH1(PL2) → CH0(PWγ ×κ L2) is contained in the image of the map
CH0(PWγ ) → CH0(PWγ ×κ L2). Hence, we find that the image of spβ ◦ spα applied to (3.13) (or
the image of spβ applied to (3.15)) is contained in the image of

CH0(PWγ )⊕CH0(Uγ ×κ L2)⊕CH0(Vγ ×κ L2)⊕CH0(Sγ ×κ L2) −→ CH0(PWγ ×κ L2) mod 2. (3.17)

Step 3. After specializing γ → 0, U , V , and S become universally CH0-trivial.
Note that Wγ specializes to

W0 = {c0 = q0 = 0} ⊂ P6

which is integral, i.e. we can apply Lemma 3.9. The schemes Uγ , Vγ , and Sγ specialize to

U0 = {x22 − 2x23 = x20x5 + x21x4 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5)) = 0} ⊂ P5

k0 ,

V0 = {x3 = x4x5 = c0 = 0} ⊂ P6
k0 ,

S0 = {x36 = x3x6 − x4x5 = c0 = 0} ⊂ P6
k0 .
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We claim that they all have universally trivial CH0. Then for each of these schemes the image
of

CH0(· ×k0 k0(PW0)) → CH0(PW0 ×k0 k0(PW0))

is contained in the image of the homomorphism

CH0(PW0) → CH0(PW0 ×k0 k0(PW0)).

In particular we find that the image of spγ ◦ spβ ◦ spα ◦Φk(PW ) is contained (3.12). The claim
follows immediately from Lemma 3.17 and Lemma 3.18 below and thus the proposition holds. □

It remains to check that the CH0-groups of S0, U0 and V0 are universally trivial. To do this
we will apply the following two results from [CTP16a].

Lemma 3.14 ([CTP16a, Lemma 2.2]). Let k be an algebraically closed field and X an integral
projective k-rational variety. If X is smooth on the complement of a finite number of closed
points, then CH0(X) is universally trivial.

Lemma 3.15 ([CTP16a, Lemma 2.4]). Let X be a projective, reduced, geometrically connected

scheme over a field k and X =
⋃N

i=1Xi its decomposition into irreducible components. Assume
that

1) each Xi is geometrically irreducible and every CH0(Xi) is universally trivial,
2) each intersection Xi ∩Xj is either empty or contains a 0-cycle of degree 1.

Then CH0(X) is universally trivial.

Another useful observation is the following lemma, proving that a variety that is a cone with
a rational point as its vertex is universally CH0-trivial.

Lemma 3.16. Assume that the projective variety X ⊂ Pn, defined over a field k, is a cone with
a k-rational point P as vertex, then CH0(X) is universally trivial.

Proof. For any field extension K/k XK is a cone with a K-rational point as vertex. So it
suffices to prove that for a cone X defined over a field k, not necessarily algebraically closed,
CH0(X) ≃ Z. To this end, let Q ∈ X be any closed point in X. Assume that the residue field
of Q has degree r over k. It suffices to prove that Q is rationally equivalent to rP , where P is
the vertex of the cone.

To see this, we consider the base change to the algebraic closure k of k. Here the inverse
image of Q is a union of r closed points Q1, . . . , Qr, and since the base change remains a cone,
each of these points can be connected to P via a line Li. So the points are rationally equivalent,
meaning that

rPk̄ −
r∑

i=1

Qi = div(f)

for some rational function f on the union. Both the union of all the lines ∪r
i=1Li and f are

invariant under the action of the Galois group, hence descend to X, and prove the rational
equivalence of rP and Q. □

Using these results, we can prove the following lemmas.

Lemma 3.17. CH0(U0) is universally trivial.

Proof. Recall that U0 is defined by the equations:

x20x5 + x21x4 + x3(x
2
5 + x24 + x23 − 2x3(x5 + x4)) = x22 − 2x23 = 0

Since the ground field is algebraically closed, the quadric x22 − 2x23 = 0 is the union of the two
hyperplanes. Hence U is the union of two cubic threefolds, which are both isomorphic to the
cubic threefolds defined in P5 by x2 = x20x5 + x21x4 + x3(x

2
5 + x24 + x23 − 2x3(x5 + x4)) = 0. From

the partial derivatives with respect to x0 and x1 we recognize that any singular point must
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satisfy one of the four possibilities x4 = x5 = 0, x0 = x4 = 0, x1 = x5 = 0 or x0 = x1 = 0. It is
straightforward to check that there are no singular points satisfying the first condition, and two
singular points for each of the three remaining conditions.

All the singular points are ordinary double points, so this cubic threefold is rational. Hence it
follows from Lemma 3.14 that each component of the union has universally trivial CH0 group.
We can therefore conclude that CH0(U0) is universally trivial by Lemma 3.15. □

Lemma 3.18. CH0(V0) and CH0(S0) are universally trivial.

Proof. Recall that V0 is defined by the equations:

x3 = x4x5 = x20x5 + x21x4 + x6x
2
2 = 0.

We recognize the scheme defined by these equations as the union of two cubic threefolds. Each
cubic threefold is a cone over a cubic surface, and as such universally CH0 trivial by Lemma 3.16.
The conclusion therefore follows from Lemma 3.15.

Since Chow groups only depend on the underlying reduced scheme, for S0 we consider the
following equations, which define Sred

0 :

x6 = x4x5 = x20x5 + x21x4 + x3(x
2
3 + x24 + x25 − 2x3(x4 + x5)) = 0.

By arguing as in the case of V0 we see that also Sred
0 is universally CH0 trivial. □

3.3. Proving that Φ is not surjective. Recall from Proposition 3.10 that the image of
Φ: CH1(Xk × k(PW )) → CH0(PW × k(PW )) modulo 2 is contained in the image of the base
change map

CH0(PW0)/2 −→ CH0(PW0,k(PW0
))/2. (3.18)

To simplify notation in the following part, we will drop the subscript 0, writing W and k for W0

and k0 respectively.
We can therefore prove that Φ is not surjective by proving the following:

Proposition 3.19. The class

δPW − zk(PW ) (3.19)

is not contained in the image of (3.18).

The proof is based on the Merkurjev pairing, introduced in [Mer08, Section 2.4], and the
proof is essentially the same as the proof of [Ska23, Proposition 3.12], which in turn is based on
methods of Schreieder in [Sch19b]. See also [PS23, Lemma 5.13].

Recall that on a smooth variety X over a field K of characteristic different from 2, not
necessarily algebraically closed, the Merkurjev pairing gives a bilinear pairing

CH0(X)×H i
nr(K(X)/K,Z/2) → H i(K,Z/2).

For an overview of the pairing and its application to rationality problems, see [Sch21, Section
5].

Proof of Proposition 3.19. Since PW is a projective bundle over W, we have an isomorphism
CH0(PW) ≃ CH0(W). Since this isomorphism also holds after extending the field to k(W), and
Chow groups do not change under purely transcendental field extensions such as k(PW)/k(W),
we also have an isomorphism CH0(PW,k(PW ))/2 ≃ CH0(Wk(W))/2. This isomorphism maps the
diagonal class to the diagonal class. From this we conclude that (3.19) is contained in the image
of the map (3.18) if and only if δW − zk(W) is contained in the image of

CH0(W)/2 −→ CH0(Wk(W))/2. (3.20)

By construction W is the same variety as the one considered in [Ska23, Lemma 3.4], which in
turn is birational to the quadric bundle constructed in [HPT18b] and therefore has a nonzero
unramified cohomology class α ∈ H i

nr(k(W)/k,Z/2), see [Ska23, Corollary 3.8].
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The main result in [Ska23] is proven by showing that the cycle δW − zk(W) is not in the image
of CH0(W) → CH0(Wk(W)). Our goal here is to prove that the cycle is still not in the image
after the reduction mod 2. Luckily, this introduces very little additional complications. In fact,
it is straightforward to use linearity of the Merkurjev paring to reduce the argument to the same
as in [Ska23]. We sketch the entire argument here for ease of reference.

The central idea is that if δW − zk(W) is in the image of (3.20), then we have an equality

δW = zk(W) + 2z′ ∈ CH0(Wk(W)), (3.21)

where z is a zero-cycle on W and z′ a zero-cycle on Wk(W).
Intuitively, we would like to say that the Merkurjev pairing of one side with α vanishes,

whereas pairing α with the other side does not. Thus we obtain a contradiction.
However W is singular, and the Merkurjev pairing is only defined on smooth varieties. To

address this issue we will first have to blow up a subvariety of W as a first step towards resolving
the singularities. Having a very explicit description of this first step turns out to be crucial for
the argument. After this blow-up, we can use an alteration and a general result by Schreieder
(Theorem 3.20) to deal with the remaining singularities. Throughout we must keep track on
how each of these operations change the equality (3.21).

Following an idea from [NO22, Theorem 7.1], we observe that W is the intersection of a cubic
hypersurface containing the plane D defined by x3 = x4 = x5 = x6 = 0 and a cone Q over a
quadric surface with vertex plane D. By blowing up this plane we get a variety W ′ = BlD W,
with a map to P1×P1 induced by the projection of the P3-bundle BlD Q to the quadric surface.
As is remarked in [Ska23], W ′ is not smooth, but the generic fibre of the quadric bundle is

smooth. We can now choose an alteration τ : W̃ → W ′ of odd degree.

Before we use the Merkurjev pairing on W̃, we must understand what equality in CH0(W̃ ×
k(W)) follows from (3.21). Since the blowup W ′ → W is an isomorphism away from the singular
locus E, we have an equality

δW = zk(W) + 2z′ + z′′ ∈ CH0(W ′
k(W)), (3.22)

where z′′ is supported on E. Next, let O′ be the complement of the singular locus of W ′, and

Õ := τ−1(O′) ⊂ W̃. Then τ induces a well-defined pullback map from CH0(O
′) → CH0(Õ).

So the pullbacks of the two sides of (3.22) by τ are equal on Õ, hence we obtain an equality

τ∗(δW ′) = δ̃τ = τ∗zk(W) + 2τ∗z′ + τ∗z′′ + z′′′ ∈ CH0(W ′
k(W)), (3.23)

where z′′′ is supported on W̃ \ Õ.
We will now compute that the Merkurjev pairing of the nonzero class α with both sides of

(3.23) is different. Hence no equality of the form (3.23) is possible, proving the proposition.

Since τ is étale in a neighborhood of the diagonal point, we have τ∗(δW ′) = δ̃τ , where δ̃τ is

the 0-cycle corresponding to the graph of the map τ in W̃ ×W ′. This graph is isomorphic to W̃,

hence τ induces a map from Spec k(W̃) to Spec k(W). Furthermore, to compute the pairing, we
can compute the pushforward of τ∗α by this map. We get〈

δ̃τ , τ
∗α
〉
= τ∗τ

∗α = (deg τ)α ̸= 0.

Since α is nonzero of even order, this class is also nonzero.
We now compute the pairing of τ∗α with the summands on the right-hand side. First we note

that since α has order 2, so does τ∗α. By linearity, the pairing with 2τ∗z′ must be zero.
Next we look at the pairing 〈

τ∗zk(W), τ
∗α
〉
= 0.

By definition of the Merkurjev pairing it factors through the restriction of τ∗α to a closed point

on W̃, a smooth variety over an algebraically closed field, and the restriction of unramified
cohomology classes of positive degree to such classes vanishes. Hence the pairing is zero.
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We next consider 〈
τ∗z′′, τ∗α

〉
= 0.

By functoriality of pullback of unramified cohomology, we can compute the pairing after re-
stricting the unramified cohomology class to the smooth locus E ∩ O′ ⊂ W ′ and then pulling

back to W̃. One can check that E is the conic bundle corresponding to the class α, hence the
restriction of α to E vanishes. (See [Ska23, Lemma 3.9].) We conclude that ⟨τ∗z′′, τ∗α⟩ = 0.

It remains to prove that 〈
z′′′, τ∗α

〉
= 0.

But z′′′ is supported on W̃ \ Õ, which is the inverse image of the singular locus of W ′. Since the
singular locus of W ′ does not dominate P1 × P1, we can conclude by Theorem 3.20 below.

From these computations, we see that the pairing of τ∗α with the left hand side of (3.23) is
nonzero, but the pairing of τ∗α with the right-hand side of (3.23) is zero. Since (3.23) does not
hold, neither does (3.21), hence Φ is not surjective. □

Theorem 3.20. [Sch19b, Theorem 9.2] Let f : Y → S be a surjective morphism of proper
varieties over an algebraically closed field k with char(k) ̸= 2 whose generic fibre is birational to
a smooth quadric over k(S). Let n = dim(S) and assume that there is a class α ∈ Hn(k(S),Z/2)
with f∗α ∈ Hn

nr(k(Y )/k,Z/2). Then for any dominant generically finite morphism τ : Y ′ → Y
of varieties, and for any subvariety E ⊂ Y ′ that meets the smooth locus of Y ′ and which does
not dominate S via f ◦ τ , we have (τ∗f∗α)|E = 0 ∈ Hn(k(E),Z/2).

3.4. Proof of the main result.

Theorem 3.21. The geometric generic fibre of the family X̃ → Spec k[[t]] from Lemma 3.7 does
not admit a decomposition of the diagonal, and is therefore not retract rational.

Proof. Assume for contradiction that the geometric generic fibre of X̃ admits a decomposition of
the diagonal. Then the map ΦX̃ is universally surjective modulo 2 by Remark 2.5. In particular,
the modulo 2 reduction of the class δPW

− zk(PW ) is contained in the image of the base change of
ΦX̃ to k(PW ), the function field of PW . Since the map ΦX commutes with specialization of the
involved varieties, and this specialization preserves the diagonal class, the class δPW − zk(PW ) is
preserved by the specialization (see also Proposition 3.10) and must be contained in the image
of the specialization of ΦX̃ . But this contradicts Proposition 3.19, so we conclude that the
geometric generic fibre does not admit a decomposition of the diagonal, which in turn implies
that it is not retract rational. □

Corollary 3.22. Let k be an algebraically closed field of characteristic different from 2 with
prime field F . Assume that the transcendence degree of k over F tr.degF k ≥ 3. Then the very
general (3,3) fivefold over k does not admit a decomposition of the diagonal, and is therefore not
retract rational.

Proof. Fix an inclusion F (α, β, γ) ⊂ k and consider the parameter space B of smooth (3,3)
fivefolds over k. By Theorem 3.21 there exists a closed point 0 ∈ B such that the (3,3) fivefold
X0 admits no decomposition of the diagonal. Since the very general (3,3) fivefold specializes to
X0 (see Lemma 2.7), we find that the very general (3,3) fivefold over k admits no decomposition
of the diagonal by [CTP16b, Theorem 1.14]. □

Remark 3.23. The bound on the transcendence degree corresponds to the number of special-
izations used to control the Chow group of the special fiber of the semi-stable specialization in
Lemma 3.7. The construction presented here uses three steps to achieve this goal hence the bound
in Corollary 3.22. Roughly speaking, we use the first two steps to simplify the Chow groups of
the components Y and Z, cf. (3.11). The final step is then to specialize the final component of
the fiber to a variety with a nontrivial unramified cohomology class, while maintaining control
of the resulting Chow groups. There might be other constructions achieving this goal in fewer
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steps, hence lowering the bound on the transcendence degree, but it seems likely that such a
construction would require a different and more careful argument to control the Chow groups.
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