ON THE RATIONALITY PROBLEM FOR LOW DEGREE
HYPERSURFACES

JAN LANGE AND STEFAN SCHREIEDER

ABSTRACT. We show that a very general hypersurface of degree d > 4 and dimension
N < (d+1)2%* over a field of characteristic # 2 does not admit a decomposition of
the diagonal; hence, it is neither stably nor retract rational, nor Al-connected. Similar
results hold in characteristic 2 under a slightly weaker degree bound. This improves
earlier results in [Sch19b] and [Moe23].

1. INTRODUCTION

A variety X over a field k is retract rational if there is some integer N > dim X and
rational maps f : X --» PV and g : PV —-» X such that the composition go f is defined
and agrees with idy. This notion is a direct analogue of retracts in topology; it was
introduced into birational geometry by Saltman [Sal82, Sal84] in the 1980s. Rational or
stably rational varieties are retract rational.

By the work of Asok-Morel [AM11, Theorem 2.3.6] and Kahn-Sujatha [KS15, The-
orem 8.5.1 and Proposition 8.6.2], a smooth proper retract rational variety X is Al-
connected in the sense of Al-homotopy theory, ie. 78 (X) = {x}. By [AMI1I, Re-
mark 2.4.8], Al-connectedness is equivalent to separable R-triviality, which means that
X(L)/R = {x} for any separable field extension L/k, where R denotes the equivalence
relation on X (L) generated by z ~ y whenever z,y € X(L) lie on the same rational
curve (defined over L). In other words, Al-connectedness provides an arithmetic ana-
logue of rational chain connectedness, which requires that any two L-rational points can
be connected by a chain of rational curves for any algebraically closed field extension L
of k. The following table illustrates the known implications for smooth proper varieties:

rational == stably rational == retract rational === A!-connected

H H

unirational === rationally chain connected
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The rationality problem for a given rationally connected variety X asks ‘how rational it
is’, that is, which of the properties in the above diagram are satisfied.

Not every unirational variety is A'-connected [AM72] and not every stably rational
variety is rational [BCTSS85]. Moreover, there are retract rational varieties (over non-
closed fields) that are not stably rational, see e.g. [EM75, Theorem 1.5 and Theorem 2.3];
it is an open problem to produce such examples over algebraically closed fields. Whether
any Al-connected variety is retract rational is open over any field.

A smooth proper A'-connected variety with a k-rational point has universally trivial
Chow group of zero-cycles and hence admits a decomposition of the diagonal [BS83],
which is an interesting motivic and cycle-theoretic property in itself.

1.1. Hypersurfaces. A particularly interesting class of varieties for the rationality
problem are smooth projective hypersurfaces X C PkN *1 of degree d and dimension
N over a field k. The interesting range for the problem is when d < N + 1, in which case
X is Fano and thus rationally chain connected by [Cam92, KMM92].

If 2 < N+ 1 and k = C, then X is unirational, see [BR21, HMP98]. If d = N + 1
and k = C, then X is irrational (in fact birationally rigid) by a theorem of de Fernex
[deF13, deF16], which extends earlier results by Iskovskikh-Manin [IM72] and Pukhlikov
[Pu87, Pu9s]. If k = C and X C PY™" is very general of degree d > 2[ %27, then it
is not ruled and hence not rational by a theorem of Kollar [Kol95]. Under the slightly
weaker bound d > 2[¥F2], Totaro [Tot16] showed that such hypersurfaces do not admit
a decomposition of the diagonal, hence are neither stably nor retract rational, nor A'-
connected. This used [Voil5, CTP16]. Totaro’s result was improved in [Sch19b], where
the same result under the logarithmic bound d > log, N + 2, N > 3 and over fields of
characteristic # 2 was proven; a similar bound holds in characteristic 2 by [Sch21a].

The logarithmic degree bound in [Sch19b] is equivalent to N < 2472, In the case of
stable rationality over fields of characteristic zero, Moe [Moe23] used the methods from
[NS19, KT19, NO22] to improve this logarithmic bound by a factor (d 4+ 1)/4 to cover
the cases N < (d + 1)2¢%. This paper generalizes Moe’s result as follows:

Theorem 1.1. Let k be a field of characteristic different from 2. Then a very general
hypersurface X C Pg“ of degree d > 4 and dimension N < (d + 1)2¢°* does not
admit a decomposition of the diagonal, hence is neither stably nor retract rational, nor

Al-connected.

While stable irrationality in characteristic zero follows in the above degree range from
[Moe23, Theorem 5.2], the assertion on retract rationality and A'-connectedness are

new. In positive characteristic, for all N < (d + 1)2%7* not covered by [Sch19b], even

d—3

rationality was previously open. For fixed degree d, a proportion of roughly o

cases
are new. The first new case concerns quintics of dimension N = 10.
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By a very general hypersurface X over a field k¥ we mean one where the coefficients
of a defining equation are algebraically independent over the prime field. With this
definition, very general hypersurfaces exist over any field (not necessarily uncountable)
of sufficiently large transcendence degree over the prime field, cf. Lemma 2.5 below.

In characteristic 2, we obtain an analogous result under a slightly weaker bound:

Theorem 1.2. Let k be a field of characteristic 2. Then a very general hypersurface
X C IP’{CV+1 of degree d > 5 and dimension N < %2‘*4 does not admit a decomposition

of the diagonal, hence is neither stably nor retract rational, nor A'-connected.

In characteristic 2, the logarithmic bound in [Sch21a] is given by N < 2473, The above
theorem improves this by a factor (d + 1)/6; for fixed d, the proportion of new cases is
given by (d —5)/(d +1).

Slightly better numerical bounds than in Theorems 1.1 and 1.2 can be extracted from
Theorem 7.1 (see also Theorem 1.3) below, which is our main result.

Our arguments allow us to bound the torsion order Tor(X) of the above hypersurfaces
X C IP’]k,V *1 i.e. the smallest positive integer e such that e - Ax decomposes in the Chow
group of X x X (or e = oo if no such integer exists). If Tor(X) > 1, then X does
not admit a decomposition of the diagonal, hence is not A'-connected. Moreover, any
dominant generically finite map f : P4™¥% ——» X has degree deg f divisible by Tor(X)
and so the torsion order yields an interesting lower bound on the possible degrees of
unirational parametrizations of X.

IfX C IP’év 1 is a smooth Fano hypersurface of degree d over some field &, then Tor(X)
always divides d!, see [Roi72] and [CL17, Proposition 5.2]. This yields an upper bound
for the possible torsion orders of Fano hypersurfaces. We then have the following result,
which improves the previously known lower bounds from [CL17, Sch21a].

Theorem 1.3. Let k be a field and let m > 2 be an integer invertible in k. Let n > 2,
r<2"=2,and s < (L%J - 1) (271 —1) be non-negative integers and write N := n+r+s.
Then the torsion order of a very general Fano hypersurface X C IP’/{CVJrl of degree d > m+n

15 divisible by m.

In Theorem 7.1 below we prove the above result under the weaker upper bound on s

given by s < (Tl‘) L%ZJ Previously, the best known bound on the torsion orders of
=1

hypersurfaces was contained in [Sch21a] and corresponds to the case s = 0.

1.2. Outline of the argument. This paper provides a flexible cycle-theoretic analogue
of the motivic obstruction from [NS19, KT19], which applies to degenerations into unions
of varieties such that the obstruction lies in some lower-dimensional strata, and not in
the components, as in [Voil5, CTP16, Sch19a).
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Previously, a solution to this problem has been proposed by the second named au-
thor with Pavic in [PS23], with an important recent generalization by the first named
author in [Lan24]. The main weakness of our previous approach is the fact that one
has to compute an explicit strictly semi-stable model of the degeneration in question,
control the combinatorics of the dual complex of the special fibre and control the Chow
groups of 0- and 1-cycles of all components, which itself is a notoriously difficult task for
almost any given smooth projective variety. These tasks have been solved in a compu-
tationally involved manner for quartic fivefolds [PS23] and (3, 3)-complete intersections
in P [LS23]. However, we do not see how to apply our obstruction from [PS23, Lan24]
systematically to examples of higher dimensions, such as to the higher-dimensional com-
plete intersections or hypersurfaces treated via the aforementioned motivic method in
[INO22, Moe23]; the total space of these degenerations are not strictly semi-stable (they
have toric singularities) and the special fibre has a large number of components whose
Chow groups seem inaccessible.

The main improvement proposed in this paper is an extension of our previous method
from [PS23, Lan24] to the non-proper case and hence in effect to (very) singular degen-
erations, that we could not handle before. On a technical level, the idea is to work with
pairs of a variety X and a closed subset W C X. To state our obstruction, we say that a
variety X admits a decomposition of the diagonal with respect to a closed subset W C X,
if the diagonal point 6x € CHy(X(x)) lies in the image of CHo(Wy(x)) = CHo(Xk(x)),
see Section 3 below. With this terminology, an ordinary decomposition of the diagonal
corresponds to one with respect to a zero-dimensional closed subset.

The obstruction to rationality that we introduce and exploit reads as follows.

Theorem 1.4. Let R be a discrete valuation ring with algebraically closed residue field
k and fraction field K. Let X — Spec R be a proper flat R-scheme with geometrically
integral generic fibre X = X Xp K and special fibre Y = X xXgp k. Let Wy C X be a
closed subscheme and let Wx := Wy N X and Wy := Wx NY be the intersections with
the generic fibre and the special fibre, respectively. Assume that the following conditions
are satisfied:

(1) X°:= X\ Wy is strictly semi-stable over R (see Definition 2.2 below);
(2) Y° := Y\ Wy consists of two components Yy, Y, with intersection Z° = Yy NYY.

If the geometric generic fibre X = X x K admits a decomposition of the diagonal relative
to the closed subset Wg := Wy xy K, then, for any field extension L/k, the map

Wyo: CHy(Yy xx L) @ CHy (Y Xy L)— CHo(Z° xx L),  (70,71) —0lze — 71lze

15 surjective modulo any integer m that is invertible in k, where ;| zo denotes the pullback

of vi along the reqular embedding Z° — Y;°, see [Ful98, Remark 2.3].
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Theorem 1.4 admits a generalization to the case where Y° is an snc scheme with-
out triple intersections, see Theorem 4.3 below. Our arguments do not generalize to
degenerations where the obstruction lies in deeper strata, see Remark 4.14 below.

The obstruction map Wy from Theorem 1.4 is a refined version of the one in [PS23,
Lan24]. The presence of Wy in the above theorem yields the extra flexibility that
was missing in [PS23, Lan24|. In applications we will declare the singular locus of
X, the non-snc locus of Y, as well as all but two components of Y, to be contained in
Wx. In particular, the family X in the above theorem may be quite singular and the
combinatorics of the special fibre Y can be complicated.

To explain the mechanism of the above theorem, assume that Z° is integral and let
Z C Y be the closure of Z°. Assume further that CH; (Y x; L) = 0 for i = 0,1 and
any field extension L/k. (This will not hold on the nose in practice, but we will be
able to achieve this after degeneration and show that this suffices for the argument.) In
particular, the map Wye in the above theorem is the zero map for every field extension
L/k. Applying this to the function field L = k(Z) of Z and assuming that X admits a
decomposition of the diagonal with respect to W, we get that the image of the diagonal
point §z in CHy(Z° x k(Z)) vanishes, and so, by the localization sequence, Z admits a
decomposition with respect to Z N Wy In other words, X admits no decomposition of
the diagonal with respect to Wy as long as Z admits no decomposition with respect to
Z N Wy. Examples of this strategy are illustrated in Examples 4.5 and 4.6 below.

Since dim Z = dim X — 1, the above reasoning sets the stage for an inductive argument
where one increases the dimension by one in each step. What makes this work is the
observation that the examples of Fano hypersurfaces without a decomposition of the
diagonal in [Sch19b, Sch2la] can in fact be shown to have no decomposition of the
diagonal with respect to a large class of divisors, see Theorem 6.1 below. This will serve
as the start of our induction. For the induction step we degenerate a given hypersurface
of degree d to a union of two rational varieties which meet along the lower-dimensional
hypersurface of degree d that we have produced in the previous step of the induction, see
Section 5 below for the precise degeneration we pick. This step is inspired by [Moe23].
The total space of our degeneration as well as the fibres and their components will be
(very) singular. The singularities are not toric and so even in characteristic zero, the
method in [KT19, NS19, NO22] does not seem to apply to our degeneration.

Remark 1.5. After completion of this paper, James Hotchkiss and David Stapleton in-
formed us that they have independently obtained a different argument which shows that,
over fields of characteristic zero, the hypersurfaces in Theorem 1.1 are not A!-connected
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and hence not retract rational, see [HS25]. Their approach relies on a homotopy-
theoretical lift of the obstruction from [NS19, KT19]. Asin [NS19, KT19, NO22, Moe23],

the assumption on the characteristic is needed to be able to apply weak factorization.

2. PRELIMINARIES

2.1. Conventions. Rings are understood to be commutative with 1. The characteristic
of aring A is the smallest positive integer ¢ € Z>; such that any element in A is c-torsion;
it is zero if no such integer exists. The exponential characteristic of a field k is 1 if k£ has
characteristic zero and it is equal to the characteristic of k otherwise.

An algebraic scheme is a separated scheme of finite type over a field. A variety is an
integral algebraic scheme. Let Y be an algebraic scheme, then we denote by CH;(Y) the
Chow groups of dimension i cycles. For a ring A, we let CH;(Y,A) := CH;(Y) ®z A.

Let R be aring. By an R-scheme we always mean a separated R-scheme of finite type,
unless stated otherwise. For an R-scheme X and an R-algebra A, we denote the fibre
product by X Xg A := X Xgpecr Spec A or simply by X4. We sometimes omit the ring
R, if it is clear from context.

2.2. Strictly semi-stable degenerations.

Definition 2.1. Let k be a field. An snc scheme of dimension n over k is a geometrically
reduced algebraic scheme 'Y over k with irreducible components Y;, © € I, such that for
any subset J C I, the (scheme-theoretic) intersection Yy := (), Y; is smooth over k
and, if non-empty, equidimensional of dimension n — |J|.

We recall the definition of strictly semi-stable schemes over a discrete valuation ring,
see e.g. [Har01, Definition 1.1].

Definition 2.2. Let R be a discrete valuation ring with fraction field K and residue field
k. A strictly semi-stable R-scheme X — Spec R is an irreducible, reduced, separated
scheme which is flat and of finite type over R with the following properties:

e the generic fibre X = X X g K is smooth over K;

e the special fibre Y = X Xy k is an snc scheme over k;

e cach component of the special fibre Y is a Cartier divisor on X.

2.3. Fulton’s specialization map. Let R be a discrete valuation ring with fraction
field K and residue field k. Let X — Spec R be a flat R-scheme of finite type with
generic fibre X = X xp K and special fibre Y = X xg k. Then, for any ring A, there is
a specialization map on Chow groups

sp : CH;(X,A)— CH,; (Y, A),
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defined as follows. If A = 7Z and z = [Z] € Z;(X) is represented by an i-dimensional
subvariety Z C X, then sp(z) is represented by the restriction of the closure of Z in X
to Y. (This restriction could be empty, in which case sp(z) = [)] = 0.) This extends
Z-linearly to a well-defined map by an argument of Fulton (see [Ful75, §4.4], [Ful98,
§20.3], or [Sch21b, proof of Theorem 8.2]). The case of arbitrary coefficients follows from
this by functoriality of the tensor product. If k is algebraically closed, then the above

map induces a well-defined map
sp: CH;(X,A)— CH;(Y, A),

where X = X xy K denotes the base change to an algebraic closure. (In [Ful75, §4.4],
[Ful98, §20.3], this is shown for the completion R of R; the above case then follows via
precomposing with the natural map CH;(X) — CH;(X x x Frac(R)).)

We will need the following specific result on Fulton’s specialization map.

Lemma 2.3. Let A be a ring and let R be a discrete valuation ring with fraction field K
and residue field k. Let p: X — Spec R and q : ) — Spec R be flat R-schemes of finite
type. Denote by X,,Y, and X, Yy the generic and special fibres of p, q, respectively.
Assume that Y, is geometrically integral and that there is a geometrically integral com-
ponent Yy C Yo, such that A = Oy y, is a discrete valuation ring and consider the flat
A-scheme X4 — Spec A, given by base change of p. Then Fulton’s specialization map

induces a specialization map
Sp - (jI‘IZ()(17 XK K(n),/\)—) CHZ(XO Xk ]%(}/0/)7 A),

where K and k denote algebraic closures of K and k, respectively, such that the following
holds:

(1) sp commutes with pushforwards along proper maps and pullbacks along reqular
embeddings;
(2) If X =Y and X is integral, then sp(dx,) = 0x,, where éx, € CHy(X, xg

K(X,),A) and dx, € CHo(Xo X k(Xo),A) denote the diagonal points.

Proof. By functoriality of the tensor product, it suffices to prove the lemma in the case
where A = Z. The lemma is then stated under the assumption that p and ¢ are proper
with connected fibres in [PS23, Lemma 5.8], but the proof does not need those assump-
tions. 0

2.4. Very general hypersurfaces and their degenerations.

Definition 2.4. A hypersurface X C IP’]kVJrl over a field k is called very general, if the
coefficients of a defining equation are algebraically independent over the prime field of k.
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We say that a variety X over a field L degenerates to a variety Y over an algebraically
closed field k if there is a discrete valuation ring R with residue field £ and fraction field
K with K C L and a flat R-scheme X — Spec R of finite type whose special fibre is Y
and such that X xp L ~ X.

Lemma 2.5. Let X — B = P(H(PY ™, 0O(d))) be the universal family of degree d
hypersurfaces of dimension N over a field k. Then the following hold:

(1) The locus of very general hypersurfaces B,, C B (as a set of schematic points)
1s the complement of a countable union of closed subsets; it is non-empty if the
transcendence degree of k over the prime field is > dim B.

(2) Let X be a very general hypersurface, namely X = X, where b € B,,. There are
(algebraically closed) field extensions L/k(B) and K/k together with an isomor-
phism of fields ¢ : K — L, such that ¢ induces an isomorphism of schemes

XXkK - XXk(B) L.

In particular, up to a base change, X degenerates to any other hypersurface Y C

PNTL of degree d in the above sense.

Proof. We have B = PV’ for some integer N'. By definition, the complement of B, CB
is given by the union of all hypersurfaces in B = PV’ that are defined over the prime
field kg of k. This is a countable union and the complement contains a point as soon as
trdeg,,, k > dim B. This proves the first assertion.

Consider the universal family Xy — By = P(H O(Pfc\g 1.0O(d))) of degree d hypersurfaces
of dimension NV over the prime field kg of k. The second item follows from the observation
that any hypersurface of dimension N and degree d over a field extension of kj, such
that the coefficients of a defining equation are algebraically independent over kg, is as
an abstract scheme (i.e. without any structure morphism) a base change of the generic
fibre of Xy — By. This concludes the proof of the lemma. O

3. TORSION ORDERS AND DECOMPOSITIONS OF THE DIAGONAL RELATIVE TO A
CLOSED SUBSET

Let X be a variety over a field k. We say that e times the diagonal of X decomposes
if there is a zero-cycle z € CHy(X) such that

G'AX:ZXX—I—ZGCHdimx(X XkX),

for some cycle Z whose support does not dominate the second factor of X x, X, see
[BS83]. The torsion order of X, denoted by Tor(X), is the smallest positive integer e
such that a decomposition as above exists; it is oo if no such integer exists, see e.g. [CL17,
Kahl17, Sch21a]. We say that X admits a decomposition of the diagonal if Tor(X) = 1.
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By the localization exact sequence [Ful98, §1.8], this is equivalent to saying that dx €
im(CHo(Wy(x)) — CHo(Xk(x))) for a zero-dimensional closed subset W C X, where
dx € Xj(x) denotes the point induced by the diagonal Ax C X x; X. This leads to the
following simple but useful variant.

Definition 3.1. Let X be a variety over a field k and let A be a ring. We say that X
admits a A-decomposition of the diagonal relative to a closed subset W C X if

dx € 1im (CH()(Wk(X),A) — CH()(Xk(X),A)) ,

where 6x denotes the diagonal point induced by the diagonal Ax C X X, X. If A =17,
we also say that X admits a decomposition (or integral decomposition) of the diagonal
relative to W.

Variants of the notion of a decomposition of diagonal relative to a closed subscheme
appear for example in [BS83], [Voil7, Definition 1.2], and [CL17, Definition 1.1].

Remark 3.2. By the above discussion, X admits a decomposition of the diagonal if and
only if it admits a decomposition relative to a closed subset of dimension zero.

By the localization sequence, the condition on dx in Definition 3.1 is equivalent to
5)( € ker (CHo(Xk(X),A) — CHo(Uk(X),A)) s

where U = X \ W. It follows that a A-decomposition of the diagonal relative to W C X
is the same thing as a A-decomposition of the diagonal of U, relative to the empty set.

These observations lead us to the following relative version of the aforementioned torsion
order studied for instance in [CL17, Kah17, Sch21a].

Definition 3.3. Let X be a variety over a field k and let A be a ring. The A-torsion
order of X relative to a closed subset W C X, denoted by TorA(X, W), is the order of
the element

dx|v = v € CHo(Up(x), M),
where U = X \ W.

By definition, Tor® (X, W) € NU{oo}. If A has characteristic ¢ # 0, then Tor™(X, W)
divides ¢ and hence is finite.

We remark that the torsion order of proper varieties relative to the empty set has
somewhat pathological behaviour. For instance, the Z-torsion order of a proper variety
with respect to the empty set is always oo, but it may or may not be finite relative to a
non-empty closed subset W C X.
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Remark 3.4. The A-torsion order of X relative to W is 1 if and only if X admits
a A-decomposition of the diagonal relative to W. Moreover, the A-torsion order of X
relative to W is nothing but the A-torsion order of X \ W, relative to the empty set.

Remark 3.5. If X is an algebraic scheme over k (not necessarily irreducible) and W C X
is a closed subset such that U = X \ W is integral, then we can, in view of Remark 3.4,
still define Tor® (X, W) via the order of the element

oy € CHO(Uk(U), A)

Lemma 3.6. Let X be a variety over a field k and let W C X be closed. Then the

following hold:

(a) For all m € Z, Tor”™(X, W) | TorZ(X, W).

(b) Let W' C W C X be a closed subset, then Tor™(X, W) | Tor(X, W").

(c) Tor(X) is the minimum of the relative torsion orders Tor”(X, W) where W C X
runs through all closed subsets of dimension zero.

(d) If X is proper and deg : CHo(X) — 7Z is an isomorphism, then Tor(X) = Tor”(X, W)
for any closed subset W C X of dimension zero, which contains a zero-cycle of degree
1.

(e) If k = k is algebraically closed, then Tor™(X, W) = Tor™(Xy, Wy) for any ring A
and any field extension L/k.

Proof. Ttems (a)—(d) follow easily from the definitions and the above discussions. To
prove item (e), note that Tor™(Xy, W) | Tor®(X, W) (even without asking that & is
algebraically closed). The converse divisibility statement follows via a straightforward
“spreading out and specialization at a k-point” argument. This concludes the proof of
the lemma. U

The next lemma explains the geometric meaning of A-torsion orders.

Lemma 3.7. Let X be a proper variety over a field k and let A be a ring. Assume
that X admits a resolution of singularities or that the exponential characteristic of k is
invertible in A. If for some closed subset W C X the complement U := X \W is smooth,
then CHy(Uy, A) is Tor™(X, W)-torsion for all field extensions L/k.

Proof. Since Tor™(Xp, Wy) divides Tor® (X, W), we can assume without loss of generality
that L = k. By work of Temkin [Tem17], we can pick an alteration 7 : X’ — X whose
degree is a power of the exponential characteristic. Moreover, we can choose 7 to be
of degree 1 if X admits a resolution of singularities. We then let W’ := 771(W) and
U = X"\ W'. We further let V' C U be the locus over which 7 is étale and define
Vi=17YV).
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Let m := Tor™(X,W). By assumptions, m - §x € CHg(Xy(x),A) vanishes when
restricted to U. Hence,
The base change of this class to the field extension k(U’) of k(U) still vanishes. If we
spread this out and use the localization sequence, we find that
(31) m-I' = [Zl] + [ZQ] S CHdimX’(X/ X X/,A),
where I' C X’ x X’ denotes the closure of the locus

(tlvr x Tly) HAY) ={(z,y) e V' x V' | 1(2) =T(y) €V} C X' x X',
and 7, Z, denote some cycles with
suppZ; C W' x X’ and suppZ, C X' x D

for some nowhere dense closed subset D C X'.

Let now z € CHy(U, A). By Chow’s moving lemma, we can assume that suppz C V
and suppz N 7(D) = (. We aim to show m -z = 0 € CHo(U,A). To this end, let
p: X' x X — X"and ¢ : X’ x X’ — X’ denote the projections to the first and second
factors, respectively. Since X’ is smooth and proper over k, we can define pullbacks
along correspondences in CH®™X (X’ x X' A).

By assumption, the support of z lies in the locus over which 7 is étale: suppz C V.
We can thus define the zero-cycle 7%z on X’ on the level of cycles via the preimages of
the points in the support of z. We then apply the correspondence I' and get

m - T*(7%2) = p.(mD - ¢*7%2) € CHo(X', A).
Since the support of z is contained in the locus V over which 7 is étale, a direct compu-
tation shows that the above zero-cycle has the property that
(3.2) 7.(m - T*(7%2)) = (deg7)* - m - 2z € CHy(X, A).
Conversely, by (3.1), we know that this cycle is rationally equivalent to
(T (m - 7°2)) = 7 ([Z1]"(772) + [Z2]*(772)) € CHo(X, A).
Since supp Zy C X’ x D and supp z N 7(D) = (), we have [Z5]*(7*2z) = 0 and so
[*(m-7°2) = [Z1]"(772) € CHo(X', A).
Since supp Z; C W’ x X', the above class lies in the image of CHo(W’, A) — CHy (X', A).

Hence,
7. (m - 772) € im(CHo (W, A) — CHo(X, A)).
By (3.2), it follows that

(deg7)* - m - 2z € im(CHy(W, A) — CHy(X, A)).
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By the localization sequence, this implies
deg(7)? - m - z|y = 0 € CHy(U, A).

Since deg(7)? is either one or a power of the exponential characteristic of k, it is invertible
in A by assumption. We deduce, as we want, that z € CHy(U, A) is m-torsion. This

concludes the proof of the lemma. 0

We will use that A-torsion orders relative to closed subsets are well-behaved under
specialization, as shown by the following lemma.

Lemma 3.8. Let R be a discrete valuation ring with fraction field K and residue field k.
Let X — Spec R be a separated flat R-scheme of finite type with generic fibre X = X X K
and special fibre Y = X x k. Let X = X x K and Y =Y x k be the base changes
to algebraic closures of K and k, respectively. Let Wy C X be a closed subset with
Wg =Wy x K CX and Wy := Wy x k CY. Assume that the fibres of U = X \ Wy
over R are non-empty and geometrically integral.

Then we have

TOIA(Y, Wy) | TOI"A(X, WX)-

Proof. By inflation of local rings [Bou06, Chapter IX, Appendice §2, Corollaire du
Théoreme 1 and Exercice 4], there is an unramified extension of discrete valuation rings
R'/R such that the residue field of R is k. Up to a base change along R'/R we can thus
assume that k is algebraically closed. (This uses item (e) in Lemma 3.6.)

Let m := Tor®(X, Wx). Then there is a finite extension K’/K such that the A-torsion
order of X x K’ relative to Wx x K’ is m. Let Rx» C K’ be the integral closure of R in
K’ and let R C K’ be the localization of Rg/ at a maximal ideal lying over the maximal
ideal of R. Then R’ is a discrete valuation ring with Frac R = K’ and R C R'. Up
to a base change along Spec R — Spec R, we can then assume that K = K’. Hence,
m = Tor (X, Wx) and it remains to show that

(3.3) Tor™ (Y, Wy) | m.

Let U = X \ Wy with generic fibre U, := U x K and special fibre Uy := U x k. By
assumptions, U — Spec R is flat with non-empty geometrically integral fibres. Let A be
the local ring of U at the generic point of the special fibre Uy. Since Uy is integral, A
is a discrete valuation ring with residue field £(Up) and fraction field K(U,). We then
apply Fulton’s specialization map on Chow groups to the base change Uy := U xp A

and obtain a group homomorphism

Sp - CI‘IO(U'77 X K(Un),A)—> CH[)(UO X k(Uo),A)
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with sp(dp, ) = du, see Lemma 2.3. This implies (3.3), because m = Tor™ (X, Wy) is the
order of dy,, while Tor™ (Y, Wy) is the order of &y, O

4. OBSTRUCTION MAP

Let Y = U,
triple intersections if Y; N'Y; N'Y; = 0 for all pairwise different 7, 5,1 € I.

Y; be an snc scheme over k (see Definition 2.1). We say that ¥ has no

The following map is the key player in Theorem 1.4, stated in the introduction.

Definition 4.1. Let Y = J,.; Yi be an snc scheme over k which has no triple intersec-
tions. We fiz a total order ‘<’ on I. Let A be a ring. Then we define the obstruction

map

(4.1) Uy @ CHL (Y, A)— €D CHo(Yi, A), - (vdi— (ilvsy = vilviy).
lel ijel
1<J

where Yi; = Y; NY; fori,j € 1.

In the above definition, v,|y;; is the intersection with the divisor Y;; C Yj, see [Ful9s,
§2.3]. In particular, |y, is represented by a 0-cycle supported on the set-theoretic
intersection |y;| NY;; and hence can be viewed as a class in CHy(Y;;, A), see also [Ful98,
Convention 1.4]. We further note that we have CHy(Y;;,A) = 0 if ¥i; = (0 and we set
%ily;; = 0 in this case.

Theorem 4.2. Let R be a discrete valuation ring with algebraically closed residue field
k and fraction field K. Let A be a ring of positive characteristic ¢ € Zxy such that the
exponential characteristic of k is invertible in A. Let X — Spec R be a strictly semi-stable
R-scheme (see Definition 2.1) with geometrically integral generic fibre X = X x g K and
special fibre Y = X xg k. Assume that Y = J,c;Yi has no triple intersections and fix a
total order ‘<’ on I. Then the cokernel of the map

Uy @ CHL(Y; xi L, A)— €D CHy(Y; x5 L, A)

lel 1,5€l
1<j

from (4.1) is Tor®(X, 0)-torsion for every field extension L/k.

Note that the family X — Spec R in the above theorem is not assumed to be proper.
We can always choose a relative Nagata compactification of this morphism, see [Stacks,
Tag 0F41]. Replacing TorA()_( ,0) by the relative torsion order of the compactification
(cf. Definition 3.3 and Remark 3.4), we can then rephrase the above theorem as follows.

Theorem 4.3. Let R be a discrete valuation ring with algebraically closed residue field
k and fraction field K. Let A be a ring of positive characteristic ¢ € Zsy such that
the exponential characteristic of k is invertible in A. Let X — Spec R be a proper flat
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R-scheme with geometrically integral generic fibre X = X xr K and special fibre Y =
X Xpk. Let Wy C X be a closed subscheme and let Wx .= WyNX and Wy =Wy NY
be the respective intersections (i.e. fibre products). Assume that the following conditions
are satisfied:

(1) X°:= X\ Wy is a strictly semi-stable R-scheme (see Definition 2.2);

(2) Yo :=Y \ Wy = J Y has no triple intersections.

i€l
Given a total order ‘<’ on I, the cokernel of the map
U @D CHL(Y? x L, A)— €D CHo (Y xx L, A)

lel ijel
i<j

from (4.1) is Tor™(X, Wy)-torsion for every field extension L/k, where Wy := Wx x K.

Corollary 4.4. Let the assumptions be as in Theorem 4.3. If X admits a A-decomposition
of the diagonal relative to Wg, then the map
Wye: @D CHy (Y xx L, A)— @D CHo (Y x4 L, A)

lel 1,5€l
1<j

is surjective for every field extension L/k.

We illustrate the mechanism of the above corollary in the following example, where we
show formally that the fact that elliptic curves admit no decomposition of the diagonal
with respect to a finite set of points implies that the same holds for certain quartic
surfaces. The result itself is of course a well-known consequence of [BS83] and the

emphasis lies in the mechanism of the argument.

Example 4.5. Let A be a ring of characteristic ¢ > 2. Let k be an algebraically closed
field such that the exponential characteristic of k is invertible in A and let f,go, g1 €
k|xo, 1, T2, T3] be general homogeneous polynomials of degrees deg f = 4 and deg g; = 2.
Consider the degeneration X = {t - f + gog1 = 0} over R = k[[t]] of a smooth quartic
surface into the union Yy U Y] of two smooth quadric surfaces Y; = {g; = 0} which
meet along a smooth elliptic curve Z := Yy = Yo NY;. Let S C X be a closed reduced
subscheme which is finite and surjective over Spec R. We further let T; C Y; be the union

of two lines contained in the two different rulings of the quadric surface Y; and set
WX =SU T() U T1 U Xsing’

where we note that the singular locus X" = {f = gy = g; = t = 0} is a finite number of
points on Z. In the above notation, Y;° = Y;\ Wy is an open subset of Y;\ 7; ~ A? hence
CH,(Y;°x,L,A) =0fori = 0,1 and any field extension L/k. By construction, Wx meets
Z in finitely many points. Since the elliptic curve Z does not admit a A-decomposition
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of the diagonal with respect to a finite collection of points, the group CHo(Z° Xy, L, A)
is nontrivial for L = k(Z), where Z° = Z \ Wy. It follows that \I/ALO is not surjective and
so Corollary 4.4 implies that the geometric generic fibre X of our family does not admit

a A-decomposition of the diagonal with respect to the finite set of points S xp K.

The following example extends the argument in the previous example to the nontrivial
case of quartic fivefolds, which was the main result in [PS23]. We leave some details to
the reader; similar constructions and arguments will be given with full details in the
proof of Theorem 1.1 below.

Example 4.6. Let k& be an algebraically closed field of characteristic different from 2
and let A = Z/2. Consider the homogeneous polynomial

[ =23yt + 21mayh + omayi 4 xor1g + 23z + aiy1w € ko, T4, X2, Y1, Yo, Ys, 7, W),
where g := 23 + 23 + 22 — 2x011 — 22079 — 22175. We consider the degeneration
X = {tol +2w=f =0} C P, — SpecR

over R = k[[t]] of a singular (2,4)-complete intersection X in IP’Z((t)) into a union Y =
YoUY] of two singular quartic fivefolds intersecting in the singular integral quartic fourfold

Z = Yo = {a3y; + 12205 + Toay; + xor19 = 0} C P},

which is birational to the quadric surface bundle example in [HPT18, Example 8]. Let
S C X be the closure of a finite set of points in X and let

Wy :=SU {1’0.1’15622/1 = 0} U SlngZ C X.

One can check that X° := X \ Wy is strictly semi-stable. The singular quartic fivefold
Y; (i = 0,1) is birational to P® via the projection from the singular point of multiplicity
3 given by z; = 0 and y; = 0 for all 4,j and z = 1 (resp. w = 1). The restriction of
this projection to the open subset Y;° = Y; \ Wx gives an isomorphism with an open

subset of A®> = P5\ {zyg = 0}. Hence, CH;(Y;® x; L) = 0 for every field extension
L/k. Recall the unramified class o = (z1/0,x2/70) € H2.(k(Z),Z/2) from [HPT18,
Proposition 11]. A direct computation (using e.g. [Sch19b, Theorem 2.3]) shows that
this class vanishes on the generic points of the divisors {zox122 = 0} and {y; = 0}
(the latter uses that (%) is a subform of the quadratic form (1, I*) over k(P?)). We
then pass to a resolution or alteration of Z and apply the vanishing result in [Sch19b,
Proposition 5.1] to the unramified class from [HPT18, Proposition 11}, to conclude via
an “action of correspondences” argument that Z does not admit a A-decomposition of
the diagonal relative to Wy = Wy NZ = (SN Z) U {xor122y; = 0} USing Z C Z; see
Theorem 6.1 below for more details on this type of argument. Thus, CHy(Z° x k(Z), A)
is nontrivial, where Z° = Z \ Wy. It follows that the map \IIAI:(Z) in Corollary 4.4 is not
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surjective. Consequently, X does not admit a A-decomposition of the diagonal relative
to Wg = (Wx N X)g. The substitution y; = zy;/zo and w = —tx3/z shows that the

(2,4) complete intersection X is birational to the singular quartic hypersurface
X' = {22y} + w120y3 + zoxays + Tox1g + 157 — tagy = 0} C Pl

One checks that the restriction of the induced birational map X --» X’ to X \ Wy yields
an isomorphism onto its image. It follows that, even after base change to an algebraic
closure of k((t)), X’ does not admit a decomposition of the diagonal relative to the union
of {xox1m9112 = 0} C X’ with a finite set of points. This produces a singular quartic
fivefold that does not admit a A-decomposition of the diagonal relative to a finite set of
points (union its singular locus). We can then apply Lemma 3.8 to conclude that any
smooth quartic fivefold that degenerates to X’ does not admit a decomposition of the
diagonal relative to a finite set of points. Altogether, this yields a simplified argument
for the main result in [PS23].

Remark 4.7. In order to prove Theorem 1.1, we would like to replace in the above
argument the example [HPT18, Example 8] with the higher dimensional examples in
[Sch19b, Section 4 and 7]. This does not work directly as the unramified class o from
[Sch19b, Proposition 5.1] does not vanish along the divisor {y; = 0}. We circumvent this
problem by introducing an additional parameter A in the family, see Section 5. Further
technical difficulties appear because we aim to apply the above argument inductively,
where we degenerate to Yy U Y; such that Y, N Y] is birational to the example of lower

dimension we had treated before.

4.1. Comparison to the map in [PS23]. We recall the obstruction map from [PS23]
in the generality needed in this paper. Let A be a ring and let Y = |J Y; be an snc

i€l
scheme over a field k. Then we consider for ¢, 7 € I the homomorphism
42) @Y, CHy(Y;, A)— CHy(Yj, A - 7
. Y 9 — j 5 ) i i .
(4.2) Yo¥s 1% 8 o5 A), =2t (vily,) i =7,
1i

where ¢;5;: Yy :=Y; NY; — Y; is the natural inclusion and ~;ly;, := L;}’ﬂ is the pullback
along the regular embedding ¢;;; of the Cartier divisor Y;; in Y;, see [PS23, Definition

3.1 and Lemma 3.2]. We additionally set
Oy, =D 0y - @) CHL(Y;, A)— CHy(Y;, A)
icl icl
for j € I and

Oy =) by 0 @ CHi(Y;, A)— @D CHo(Y;, A).

jel el Jjel
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Lemma 4.8. Let R be a discrete valuation ring with residue field k and let X — Spec R
be a strictly semi-stable R-scheme with special fibre Y := X xXg k. Then fori,5 € I and
v € CH1(Y;, A), we have

CI)%,)/j(’Yi) = 17 € CHo(Yj, A),
where v;: Y; — X is the natural inclusion.
Proof. This follows from [Ful98, Theorem 6.2], see also [PS23, Lemma 3.2]. O

The effect of base changes for ® has previously been studied in [PS23, Section 4]
and [Lan24, Theorem 1.1]; some version of ¥ appeared implicitly in the proof of [PS23,
Proposition 4.4].

Proposition 4.11 below compares ® and W and shows that the morphism ¥ introduced
in (4.1) has excellent properties under base changes. This will play an important role in
the proof of Theorem 4.2 below.

Recall that the dual graph G = (V, E) of an snc scheme Y without triple intersections
is the graph whose vertices V' correspond to the irreducible components of Y and whose
edges E encode the codimension 1 subvarieties of Y. Moreover, we explicitly fix a total
order ‘<’ on the set of vertices V. We denote for a vertex v € V and an edge e € E the
corresponding irreducible subvariety by Y, and Y., respectively. For an edge e € E, we
denote its end points by v(e),w(e) € V and assume that v(e) < w(e). (Note that every
edge in G has two distinct vertices.)

Lemma 4.9. Let A be a ring of finite characteristic ¢ € Z>y. Let R be a discrete
valuation ring with fraction field K and algebraically closed residue field k. Let X —
Spec R be a strictly semi-stable R-scheme whose special fibre Y := X X g k has no triple
intersections with dual graph G = (V, E). Let R'/R be a finite ramified extension of
discrete valuation rings such that the ramification index r is divisible by c. Let X' —

X X R be a resolution given by repeatedly blowing up the non-Cartier components of
the special fibre as in [HarO1l]. Then the following holds:

(1) X' is strictly semi-stable and its special fibre Y’ has no triple intersections. The
dual graph G' = (V' E") of Y’ consists of the vertices V! = VU(Ex{1,...,r—1})
and edges (v, w') € V! x V' of the form

/

v = (e,n), w' = (e,n+1) foree B, ne{l,...,r—2},
v =w(e), w' = (e, 1) foree E, or

v =(e,r — 1), w =wle) foree E.
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(2) The components Y, forv € V are isomorphic to 'Y, and the components Y’ f07"
e€ E and 1 <n<r are P-bundles over Y, with two disjoint sections

S(emn) - Yiiz,n) N }/(/e,n—l-l) _>Y(Ie,n)’
/ Ve / /
S( : }/(evn_l) m }/(evn) _>Y7(evn)’

en)

_Y/

gwen by the natural inclusion, where we set Y(’e 0) = Y’ ) and Y/ w(e)-

(e,r)

Proof. The geometry of the resolution after finite base-change is explained for example
in [PS23, Section 4.2] for chains. The same arguments work for any special fibre that

has no triple intersections, see also [Lan24, Proposition 4.11]. 0

Remark 4.10. The graph (V’, E’) is obtained by subdividing each edge of (V, E) into
r pieces, see for example [Lan24, Example A.1].

Proposition 4.11. In the notation of Lemma 4.9, let L/k be a field extension. If the
cokernel of
oy, 0 @ CHi (Y] x4 L, A)— @ CHo(Y, i L, A)
VeV’ w'ev’
1s m-torsiton for some integer m, then the cokernel of the map

Uy @D CHL (Y, % L, A)— @D CHy(Yy; x4 L, A)

lev i,j€V
1<jg

from (4.1) is m-torsion.

Proof. For ease of notation, we will deal with the case L = k in what follows; the general
case follows verbatim via the same argument.

Recall that q(en) : Yy, ) = Yeis a Pl-bundle for 1 < n < r by item (2) in Lemma 4.9.
Thus there exists isomorphisms

(4.3) CHy (Y, ), A) = CHy(Ye, A) © g, ) CHo(Y, A),
(4.4) CHo(Y(;n)» A) =2 CHo(Y, A),
see [Ful98, Theorem 3.3 b) . Note that the subspace ¢, CHO(Ye,A) is canonical,

(b)]
while the subspace CHi(Ye,A) C CHi(Y[, ), A) depends on a choice of a section of

d(en) - }/(e n) - Y
Step 1. We will show that for every 7' € @,,.,» CH1 (Y}, A), there exists another class
v € @,y CHi (Y], A) with the same image ®3, () = ®$.(7'), such that the component

Ven) € CH1(Y(, ), A) of v satisfies
(45) Ven) € qzke,n) CHO()/e? A) - CHl(Y(,e,n)? A)
for each (e,n) € Ex {1,...,r —1}.



ON THE RATIONALITY PROBLEM FOR LOW DEGREE HYPERSURFACES 19

This follows from the argument in [PS23, Lemma 4.3], which we explain for the conve-
nience of the reader. Let 7' = (7,,)v € @,cy» CH1(Y,,, A) be a collection of one-cycles
and let (e,n) € E'x {1,...,r — 1}. Using (4.3), we can write v, as

*

Viem) = Qe ®em) + Stem) +Clem);
for some o) € CHo(Ye, A) and some () € CHy(Ye, A), where s, is the section
given in item (2) of Lemma 4.9. Lemma 4.8 implies that
(I)éf (S(e,n) *C(e,n)) = (I)Q’ (Sl(e,nJrl) *C(e,n))v
- Y(/e,n+1)

(I)A/(W/) — ¢A/(7//)’

where s’(e 1) Y(’e n) N Y(’e 1) is the natural inclusion. Thus

where 7" = (7)) € B,y CH1(Y,),, A) is given by

(o) (em) if v = (e, n),
71/)// - ’YEEJLJF].) + SI(E,n-i-l)*C(eﬂn) if v = (6, n+ 1)7
v otherwise,

where we set (. ) = Vo) € CHl(Yl’U(e), A). Applying this argument for every edge e € F
and 1 <n <r —1 (in increasing order) finishes Step 1.
Since Y is an snc scheme without triple intersections, we have Y, NY, = () for all
different e, e’ € E. In particular,
D CHo(Yyj. A) = €D CHy (e, A).

i,jEV c€E
1<J

Using this identification, there is a natural projection homomorphism
pr,: @D CHo(Yi;, A)— CHy(Ye, A)

ijEV
i<j

for every e € E. We denote the composition pr, o¥4 by \Ilg\,vye.
Step 2. Let v = () € @B,c1» CHi(Y,,, A) be a one-cycle satisfying (4.5) and let
q: Y’ — Y be the natural morphism. We will show that for every e € E

(e,m)

r—1
(4.6) D n- By (1) = Uy (¢.7) € CHy (Y., A),
n=1

where we view the zero-cycles on the left hand side as zero-cycles on Y, using (4.4).
To prove the above claim, first note that by assumption there exists o ny € CHo(Ye, A)
for every (e,n) € E x {1,...,r — 1} such that

V(emn) = qzke,n)a(e,n) = CH1<Y7(I6771)’ A)
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To simplify the formulas below, we set additionally
X(e,0) = Yo(e)v. € CHo(Ye, A),
ey = ’Yw(e)lYe € CHO(Y:Ev A)a

where %(e)|ye is the pullback of v,e) along the regular embedding Y, — Y, ) of the
Cartier divisor Y, C Y,). Note that we used here the isomorphisms Y;}’(e) ~ Yye)- By
(4.2), we see that for such a collection of one-cycles v = (), fore € Eand 1 <n <,

A
(P /7}//

(en) (7) = _2a(e,n) + a(e,n—l) + a(em,-i-l) S CHo(YV@ A) =~ CHO(}/(Ie,ny A)

The following computation then shows the claim in Step 2

r—1 r—1
Don Py (1) =D (=200 + Aen1) + Vears)
n=1 n=1
r—2
= Q(e,0) = TQ(er—1) + (1= D)ar(e,y + Z(—2n +n+1+n—1)aeEn
n=1

= Q(e,0) T Aeyr)

= Yv(e)
= Uy (q7),

Ye = Tw(e)lYe

where we used in the third equality that r is divisible by the characteristic ¢ of A.
We finish the proof of the proposition. To this end, let

z = (Ze)e S @CHO(KaaA)

ccE
be a collection of zero-cycles. By assumption, there exists a one-cycle vy € @, CH1 (Y}, A)
such that ®4,(y) = 3, where 3 is the collection of zero-cycles (By)y in @,y CHo (Y, A)
with

m-z forv = (e 1),

Bfu’ -

0 otherwise.

By Step 1, we can assume that 7 satisfies the condition (4.5). Then Step 2 shows that

m -z = U (q.y) is contained in the image of W%, as we want. O

Remark 4.12. The key point in the above proof is (4.6). In the chain of equalities
showing (4.6), we used that A has positive characteristic ¢ and r is divisible by ¢. We do
not know how to perform this step integrally, despite the fact that the (more general)

analysis of ® under base changes carried out in [Lan24] does in fact work integrally.

Remark 4.13. In [PS23], the obstruction morphism ®% is studied for strictly semi-
stable degenerations X — Spec R that are proper. Under this assumption, the image of
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®Z is contained in the kernel of the degree map. The obstruction to the existence of a
decomposition of the diagonal used in [PS23] is the cokernel of ®Z viewed as a map to
the subspace of degree-zero classes. In the above discussion, properness is dropped and
so we cannot talk about the degree anymore. This is the reason why we work directly
with the cokernel of ® and W, respectively. An important difference between ® and ¥
is the fact that ® maps to the Chow groups of zero-cycles of the components, while ¥

maps to CHy of the intersections Y;; of two irreducible components of Y.
4.2. Proof of Theorem 4.2.

Proof of Theorem 4.2. Let m := Tor®(X,0). Then there exists a finite field extension
F/K such that Tor™(Xp, ) = m.

A suitable localization R’ of the integral closure of R in F'is also a discrete valuation
ring with fraction field F' and residue field k. (Note that k is algebraically closed.) Up
to replacing R’ by a ramified extension, we can assume that the ramification index r of
R'/R is divisible by the characteristic ¢ of A.

Recall that the special fibre of X — Spec R is an snc scheme Y which has no triple
intersections by assumption and we denote its dual graph by (V, E'). By Lemma 4.9, there
exists a resolution X — X xp R’ by repeatedly blowing-up the non-Cartier components
of the special fibre. The generic fibre of X — Spec R’ is isomorphic to Xp and the
special fibre Y’ has no triple intersections and its dual graph (V’/, £’) is as in Lemma 4.9
(1). It then suffices by Proposition 4.11 to show that coker CI>§>L/ is m-torsion for all field
extensions L/k.

Let L/k be a field extension. By inflation of local rings (see e.g. [Bou06, Chapter IX,
Appendice §2, Corollaire du Théoreme 1 and Exercice 4]), there exists an unramified
extension of discrete valuation rings A/R’ such that the induced extension of residue
fields is L/k. Passing to the completion, we may in addition assume that A is complete.

We consider the base-change
X=X xp A— Spec A,

which is a strictly semi-stable A-scheme, see e.g. [Har01, Proposition 1.3]. We aim to
show that the cokernel of the map
oy, 0 @ CHy(Yy, ., A)— €D CHo(Yy, 1, A)
v'eV? w'ev’
defined in (4.2) is m-torsion, where Y}, ; := Y}, X}, L. Let
2= (2w)w € @) CHo(Yy 1, A)
w' eV’
be a collection of zero-cycles. (By a moving lemma, we can assume that no z,, lies in

the intersection of Y, with another component Y,,.) By Hensel’s lemma, sece [EGAIV .4,
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Théoreme 18.5.17], there exists a horizontal one-cycle h € Z; (X4, A) such that
w! L ’

holds for all w’ already on the level of cycles (without rational equivalence). Recall that
m is the A-torsion order of Xz with respect to the empty set. Lemma 3.7 together with
Nagata’s compactification theorem thus implies that CHo(Xp x g F’, A) is m-torsion for
all field extension F’/F. It follows that the restriction of m - h to the generic fibre
X4 X4 F' = Xp xp F' vanishes, where I is the fraction field of A. Thus the horizontal
one-cycle m - h is rationally equivalent to a cycle v supported on the special fibre Y/ by
the localization exact sequence, see [Ful98, §1.8]. Hence, we see from (4.7) and Lemma
4.8 that m - z = (I>AL/ (y) is contained in the image of CDAL/. This shows that the cokernel
of the map CIDQL, is m~torsion, which finishes the proof of the theorem. O

Remark 4.14. The assumption that the special fibre has no triple intersections in The-
orem 4.2 appears to be crucial. In particular, there seems to be no useful generalization
of ¥ to snc schemes with deeper strata, despite the fact that the definition of ® in (4.2)
makes sense in more generality, see [PS23, Section 3]. Indeed, if Z =Y;, N---NY,, isa
strata of the special fibre Y, then we can always perform an n : 1 base change followed
by a resolution as in [Har(01] to arrive at a special fibre Y that contains a component Py
that is birational to a projective bundle over Z. However, for n > 3, one can show via
similar arguments as in [Lan24] that the diagonal point of Pz will automatically be in

the image of CDY/M (The key difference to n < 2 is that the blow-up of a component

Py’
Y;, along Z contains a positive dimensional projective bundle over Z if n > 3.) Hence,
the strategy for disproving (retract) rationality in [PS23, Lan24] cannot be applied to

strata given by the intersection of more than 2 components.

5. DOUBLE CONE CONSTRUCTION

In this section we consider an explicit degeneration of a variety birational to a degree d
hypersurface X’ into a union of two rational varieties whose intersection Z is a degree d
hypersurface of lower dimension. We aim to apply Theorem 4.3 to this particular family
and show that the A-torsion order of Z divides the A-torsion order of X’. In particular,
we can inductively increase the dimension of retract irrational hypersurfaces.

Let k = m be an algebraic closure of the purely transcendental field extension kq(\)
of an algebraically closed field ky. Write N = n + r + s for some integers n,7,s € Zxg
and consider integers d > 4 and [ > 1 such that 2] < d. We denote the homogeneous

N+3
]P)k

coordinates of by To, .o Ty Yty e s Yy 215 - - -5 Zs, 2, W Lt

(51) f,(lo,a/b...,al € ]{]0[1’0,...,$n7y1,...,ij,...,y,«Jrl?Zl,...,ZS]
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be homogeneous polynomials of degree deg f = d and dega; = d — 2¢ which do not
contain the variable y; for some 1 < 5 <7 + 1. Assume that

(5.2) fHao€k[xo, .., Tns Yty s Yjye oy Yrtls 215 - - -, 25 18 irreducible.

Let R := k[t be the local ring of A' at the origin and consider the complete intersection
R-scheme

!
(5.3) X = {f + Zaixéy; + 287 + 2l 2y + mo)w =t + 2w = 0} C PRTR.
i=0

Lemma 5.1. The singular locus of X in (5.3) is contained in {zo =0} C X.

Proof. Consider the part of the Jacobian given by the derivatives d; and 0,

0 xdt
2 ow |

As the singular locus is given by the vanishing of all 2 x 2 minors of the Jacobian, we
see that it is contained in {xy = 0} as claimed. O

The generic fibre of the family X — Spec R in (5.3) is birational to a degree d hy-
persurface. For the inductive argument to work, it will be important to understand the
corresponding birational map, which is the content of the following lemma, where we
denote by K := k(t) the fraction field of R = k[t] ).

Lemma 5.2. The generic fibre X = X xp K of the family (5.3) is birational to a
geometrically integral degree d hypersurface X' of the form

l
(5.4) X' = {f +) dy; = o} c PN+2,
=0

where fis as in (5.1) and apy, ..., a; € K[To, ..., Tn, Y1, Ujs e ooy Yrt1s 215 - - - Zs41] QTE
homogeneous polynomials of degree deg a, = d—1i. (An explicit formula for them is given
in (5.6) below.) Moreover, they satisfy the following properties:

(1) The birational map induces an isomorphism between the open subsets {zo # 0} C
X and {xpzs41 # 0} C X';
(2) If there exists e € N such that zi¥ | a; for alli = 0,...,1, then xi¢ | a} for all

1=0,...,0;
(3) If all ag, ...,a; do not contain one of the coordinates xi,...,%Tn, Y1, .-, Yrs1, OT
21, .., 2s, then so do all ag, ..., a);

(4) The polynomial f + al) is irreducible over K.
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Proof. The parameter ¢ is nonzero on the generic fibre X of (5.3). We then work on the

open subset {x¢z # 0} and perform the substitution w = —tx2z~! to obtain the equation
!
(5.5) f+ Z aizgy; + gtz — 2§y + xo)tagz Tt = 0.
=0

After the change of coordinates y;—y;2/xo — A~ 'z¢ we arrive at the degree d hypersur-
face given by the vanishing of the polynomial
!
f+ Z ai(y;z — N7 ad) 4 oty — ity = 0.
i=0
Reordering the terms and renaming the coordinate z to zs.1, yields the claim that X is
birational to a degree d hypersurface X’ of the form (5.4), where

l
(56) a; = 224_1 <Z (T) (_A_l)m—ixgm—%am) . i71t>\$g_l + 5i,0173_12’s+1-

This shows (2) and (3). Item (1) follows immediately from the above construction.
Indeed, the coordinate transformation y;+—y;2/x¢ — A1z is invertible on the set {zgz #
0} with inverse given by y;+—zo(y; + A"'x¢)/2. Thus the birational map induces an
isomorphism between the open subsets {xg # 0} = {x¢z # 0} C X and {zpzs41 # 0} C
X', (Note that we renamed the z-coordinate to zsy1.) Next we prove (4). Since aj
contains the variable zg, linearly by (5.6) and f does not contain zs., the condition
(5.2) implies that f + af is irreducible, as claimed. The hypersurface X' is geometrically
integral by (4). O

Remark 5.3. The name “double cone construction” is taken from [Moe23]; it is reflected
by the fact that the generic fibre of our degeneration can birationally be described by
the equation (5.5) above, which contains the variable z and its inverse linearly and so
its Newton polytope is a double cone. We note however that the degenerations that
we use in this paper in general do not have toric singularities (e.g. because the singular
hypersurfaces in [Sch19b] do not have toric singularities) and hence is different from the
degenerations suitable for the method of [NO22, Moe23].

Corollary 5.4. The generic fibre X of (5.3) is geometrically integral.

Proof. Since X is a complete intersection in IP’%H, it is equidimensional and Cohen-
Macaulay. As X is Cohen-Macaulay, X has no embedded components. By Lemma 5.2,
we know that the open subset {zy # 0} C X is isomorphic to an open subset of the
geometrically integral hypersurface X’ C PX*? in (5.4). Hence it suffices to show that
the subset {xy = 0} C X is not an irreducible component of X, which is clear because
f + ap is an irreducible polynomial by (5.2). O
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We turn to the special fibre of the family (5.3). The special fibre Y = X x g k of the
family (5.3) has two components, namely

(5.7) {f+Za:L’OyJ+:UO 2:0} C P+

and

I
(5.8) Y, = {f + Zaixf)y; + 2872 (\y; + 20)w = 0} C Pyt
i=0

The intersection Z := Yy N Y] is the degree d hypersurface

(5.9) 7 = {f+ Zazxoyj } C Pyt

The assumption (see (5.2)) that f + ag is irreducible implies that Z is integral.

Lemma 5.5. The singular locus of Yy is contained in {xo = 0} and the singular locus

of Yy is contained in the closed subset {xo(\y; + xo) = 0}. Moreover,
YNz c 7z,

Proof. The derivative of the defining equation of Yy with respect to z is given by

(f—i—Zaszy]—i-xo z) =yt

Hence, the singular locus of Y is contained in {xy = 0}.

The derivative of the defining equation of Y; with respect to w is given by

!
Ow (f + Z azhy, + &2 (\y; + xo)w> = 20 2(\y; + x0).
=0

Hence, the singular locus of Y; is contained in {zo(Ay; + zo) = 0} as claimed. Finally,
the last claim in the lemma is clear, as Z C Y; is a Cartier divisor in Y; (given by
{w =0} CYy). O

In order to understand the obstruction map (4.1) for the family (5.3), we need to
control the Chow group of the two components Yy and Y.

Lemma 5.6. Let Yy and Yy be as in (5.7) and (5.8), i.e. the irreducible components of
the special fibre of the family (5.3). Consider the divisors Dy := {xy = 0} C Yy and
Dy := {zo(Ay; + o) = 0} C Yy. Then the natural push-forward maps

CHl(DO Xk L)—) CHI(}/E) Xk L), CH1<D1 Xk L)—) CHI(}/I Xk L)

are surjective for every field extension L/k.
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Proof. Let L/k be a field extension. Recall that
I
Yy x5 L = {f + Zaixéy;- + oty = O} c PY*2
i=0

I
Y] Xy L = {f + Zaixgy; + 2872 (A\y; + z0)w = O} c P2,
i=0

We consider Y} x, L. The projection away from P = [0 :---:0: 1] € PY*™ induces a

rational map
p: Pg“ -— Pg“.

Since w appears only linearly in the defining equation of Y; x;, L, the restriction of ¢ to
Y] X L yields a birational map

Yy xp L - P

which induces an isomorphism between the complements of the closed subschemes Dq X,
L CYy xy Land Hy == {xo(\y; + 39) = 0} C PY™ respectively. Since H, is a union of
two hyperplanes in Pg *1 the pushforward along the natural inclusion

CH,(H;)— CHy(PY*Y) ~ Z

is surjective. Thus, by the localization exact sequence (see [Ful98, Proposition 1.8]), we
find that

CHl(Dl Xk L)—> CHl()/l Xk L)
is surjective, as CH; (Y] Xy L\ Dy Xy L) ~ CHl(]P’gJrl \ H1) = 0 by the above discussion.
A similar argument shows that

CHl(DO Xk L)—> CHl()/O Xk L)

is surjective. This finishes the proof of the lemma. OJ

The following proposition is the main result of this section; it will be used for the

induction step in our inductive argument.

Proposition 5.7. Let A be a ring of positive characteristic such that the exponential
characteristic of ko is invertible in A. Let X — Spec R be the projective family from
(5.3) with generic fibre X for some Il > 2. Let Yy and Y; be the irreducible components
of the special fibre as in (5.7) and (5.8) and denote their scheme-theoretic intersection
by Z :=YyNYy. Let

h € R[To, oy Tuy Yty ey Yridy 21y -« 5 2]
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be any homogeneous polynomial such that its reduction hy modulo the mazimal ideal in
R has coefficients in ko, i.e. hg € ko[To, ..., Tny Y1, Yrs1, 21, - - - 25| and such that X
is smooth over K = k(t) away from Wx = {xoh =0} C X. Then

Tor™(Z, W) | Tor®(X, Wx),

where Wy := {xghg = 0} U Z5" C Z and W = Wx xx K C X = X xg K. In

particular,
Tor™(Z, W) | Tor® (X', W),
where X' is as in Lemma 5.2, X' := X' xg K, and W' := {z¢zs11h = 0} C X'.

Remark 5.8. As a consequence of Lemma 5.1, the smoothness of X'\ Wy is automatically
satisfied in characteristic 0. This is not true in general, but we will choose in our
applications Wy carefully so that the condition holds (over any field).

Proof. Since A is a ring of positive characteristic,
m = Tor™(X, Wy)

is a positive integer m € Z>;.
Step 1. We will check that the assumptions in Theorem 4.3 are satisfied for the
projective family X — Spec R from (5.3) with the closed subset

Wy == {zoh =0} U Y™ Uz C x.

As in Theorem 4.3, let Wy := Wy NY. We note that Wy agrees with Wy N X. The
generic fibre X of X — Spec R is geometrically integral by Corollary 5.4. The special
fibre Y° := Y\ Wy consists of two components Y° = YUY} such that Y7, Y°, and their
intersection Z° := Y7 NY}" are smooth and integral, see also Lemma 5.5. In particular,
Y is an snc scheme, see Definition 2.1. The singular locus of X" is contained in {z¢ = 0}
by Lemma 5.1. It follows from this that Y,° is a Cartier divisor on X° for ¢ = 0,1. The
generic fibre of the R-scheme X° := X \ Wy is equal to X \ Wx and thus smooth by
assumption. In particular, X° — Spec R is strictly semi-stable, see Definition 2.2. It
follows that the assumptions (1) and (2) in Theorem 4.3 are satisfied for X — Spec R
and the closed subset Wy C X. This concludes Step 1.

Recall that Z is integral and let dz. € Z MZ) denote the diagonal point of Z°, which is
dense open in Z.

Step 2. We will show that there is a one-cycle v € CHy(Y; x; k(Z), A), supported on
{xo(Ay; +z0) =0} C Y7 Xy k(Z), such that
(5.10) m-dze = (") z

k(Z)

€ CHO(Z;(Z)7 A)a
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where ¢: Y Xy k(Z) — Y] Xy k(Z) denotes the natural open embedding and (t*y)]|ze

k(2)

the pullback of the one-cycle to the Cartier divisor Z; ) C Yy* X k(Z) along the natural
regular embedding.

By Step 1, Theorem 4.3 implies that the cokernel of the map
Ugo: CHy(Yy xx L, A) @ CHy (YY" Xy, L, A)— CHo(Z° X, L, A)
from (4.1) (with 0 < 1) is m-torsion for every field extension L/k. In particular,
m -0z € im \If%&z).
Note that CH;(Yy x k(Z),A) = 0 by Lemma 5.6 and that the pull-back
1 CHy (Y xi k(Z),N)— CHy (Y xi k(Z),A)

is surjective by [Ful98, Proposition 1.8]. Hence there exists a one-cycle v € CH;(Y; X
k(Z),A) such that m - dz. = (1*) 225, By Lemma 5.6 we can further assume that 7 is
supported on {xo(Ay; + z9) = 0} C Yy Xy k(Z). This concludes Step 2.

Step 3. We specialize now A — 0 and aim to compute the image of (5.10) under the

corresponding specialization map on Chow groups (see Lemma 2.3); we will show that
the specialization of the one-cycle v vanishes and so does the specialization of m - dz..

Consider the discrete valuation ring B = ko[A](») with residue field ko and fraction field
ko(X). Recall that k is an algebraic closure of ko(\). Then consider the flat projective
B-schemes

I
Z = {f + Zaixéy]i- = 0} c PY Y
i=0

!
V= {f + Z aixéy;» + 2872 (\y; + 20)w = 0} c Pyt
i=0

where f and a; are as in (5.1). Note that Z and Y] are the geometric generic fibre of
Z and ), respectively. Let Z° C Z and )y C ); be the complement of the closure of
Wy in Z and of Wy, in ), respectively. Note that Z° = Z \ Wy and Y = Y] \ Wy,
are the geometric generic fibres of Z° and )7, respectively. We denote the special fibres
by Zg and Y, respectively. By Lemma 2.3, there exist specialization maps induced by
Fulton’s specialization map for the flat Oz z,-schemes Z° x5 Oz z,, Vi x5 Oz z,, and
Vi xp Oz z,

SPgo : CHo(ZO Xk ]{(Z), A)—> CH()(ZOO X ko k’o(Zo),A),

Sleo : CHl(}/lo Xk k(Z), A)—> CH1 (}/1(?0 X ko ko(Zo), A),

SPy, * CHl(Yi Xk I{Z(Z), A)—> CHl(YiQ X ko ko(Zo), A),

where Y o denotes the special fibre of the B-scheme ).
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We apply now the specialization sp,. to the zero-cycle (5.10). By Lemma 2.3, we get

(5.11) m - 6z5 = 8pgo(m - 0z0) = SpZo((L*7)|Z:<Z)) = Spylo(l/*’y”Zg,kO(ZO),

where | 2 and | 28 o0 denote the pullback along the regular embedding of the Cartier
divisor Zy 4 and Z3, .\ in Y° X k(Z) and Y{7 Xk, ko(Zo), respectively. Recall that the
one-cycle v is supported on {zo(Ay; + z9) = 0} C Yy x; k(Z). Thus the specialization
spy, (7) € CH1 (Y10, A) is supported on {2 = 0} C Y1 . In particular

spyp (") = 0 € CHy (Y1),

as the subset {zo = 0} C Y} is contained in the specialization of Wy, and sp commutes
with pullbacks along open immersions. Hence, the right hand side of (5.11) vanishes,
which concludes Step 3.
By Step 3,
Tor™(Zy, Wz,) | m,

where Wy, C Z, is the specialization of W, C Z. We note that Z = Z; Xy, k and
Wy = Wy, Xk, k, because the defining equations of Z and W, are defined over ky.
Hence, the proposition follows from Lemma 3.6 (e), as m = Tor™ (X, Wy). O

6. BASE CASE

Our argument will rely on an inductive application of a degeneration as in Section 5.
For the start of the induction we will use the explicit example of a singular hypersurface
with nontrivial unramified cohomology from the proof of [Sch2la, Theorem 7.1]. We
recall the example in what follows.

Let k£ be an algebraically closed field and let m > 2 be an integer coprime to the
exponential characteristic of k. Let n > 2 and r < 2" — 2 be positive integers. Let
20y Tny Y1,y -+ Yrge1 be the coordinates of PP+ and let m € k be an element that
is transcendental over the prime field of k. Consider the homogeneous polynomial from
[Sch21a, Equation (21)]

(6.1) g(xTo, ..., Tp) =T (Z :an7#1> — (—1)”:531(%1w Try e 2y

in k[xg, ..., x,] of degree deg g = m (%W < n+m. Using this we define the homogeneous
polynomial
m+n—de n—degc; m n m
F = g(xo, ... x,)zy 080 4 Zxo ey, wn)y A+ (F1) s Yl
j=1
in k[xg,...,Tn, Y1, .., Yrr1] of degree m + n, where

(6.2) ci(x1, ... xy) = (—21) (—x2) - -+ (=)™ € k[x1, ..., Ty)
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with &; the (i — 1)-th digit in the 2-adic representation of j, i.e. j = >, &2! with
g; € {0,1}. Consider the associated hypersurface

(6.3) Z={F =0} CcP;""
of degree m + n.

Theorem 6.1. Let | € k[zg,...,x,] be any nontrivial homogeneous polynomial and
consider

Wy = {y,1l =0} U 2" C Z
where Z is as in (6.3). Then Tor®”™(Z, W) = m.

We have the following immediate corollary.

Corollary 6.2. Let h,l',l" € k[xy,...,x,] be nontrivial homogeneous polynomials such
that h is irreducible of degree m + n + degl’. Let k' = k(p) be a purely transcendental
field extension of k. Consider the hypersurface

Z,={ph+1'-F =0} c P!
of degree m +n + degl’. Then TorZ/m(Zp, Wz ) =m, where Z,=7,xp K and
Wy = {yenal1" = 0} U Z578 x4 I C 2,

Proof. Consider the pair (Z,, W) and let (Zy, Wz,) be the pair obtained by specializing
p— 0, 1e.
Zy={l'"F =0} Cc Pyt
Wz, = {yr /" =0}y U Z3™8 C 7.

Note that the scheme Zj is reducible, but the open subscheme Uy := Zy \ Wy, C Zj is
integral as the polynomial F' is irreducible. Hence, the torsion order Tor®™(Zy, Wy,)
is defined, see Remark 3.5. We observe that Uy = Z \ Wy, where the pair (Z, W) is
as in Theorem 6.1 with [ = " - 1" € k[, ..., x,]. Thus, we get Tor”/™(Zy, Wy,) = m
by Theorem 6.1. Hence, m divides Tor”™(Z,, Wz ) by Lemma 3.8. Conversely, any
Z/m-torsion order can be at most m. Hence, Tor”™(Z,, Wz, ) =m, as claimed. O

Proof of Theorem 6.1. This follows from arguments similar to those in the proof of
[Sch21a, Theorem 6.1 and 7.1]; we give some details for the reader’s convenience. Let
P={zy=- =1z, =0} CP""" and consider the blow-up Y := BlpZ, which can be
described via the vanishing locus of

m-+n—de, m n—degc; m n m
(64) g(an"'7$7L)'IO+ g(g)?/o +Z‘T0 ¢ ch(zlﬂ"'amn)yj +(_1) T1T2 .. - TplYpiq,

j=1
inside the projective bundle Pp.(O(—1) @ O®T+1)) over P, where y, denotes a local
coordinate that trivializes O(—1) and yi, ..., y,;1 trivialize O®0T). The projection to
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the x-coordinates induces a morphism f : Y — P}. We furthermore pick an alteration
7Y =Y of order coprime to m, which can be done by [Tem17], see also [IT14]. The
corresponding alteration of Z is denoted by 7: Y’ — Z.

As detailed in [Sch21a, §7], an application of [Sch2la, Theorem 5.3] shows that the
pullback of the class « = (w1 /w0, ..., 2, /x0) € H"(k(P™"), u&™) yields an unramified class

v = fra € Hy (k(Y)/k, ") = Hy (K(Z) [k, ")

of order m such that for any subvariety £ C Y’ which does not dominate P" via f o 7/,
the class (7/)*y vanishes in H"(k(E), u$™). Moreover, the class f*« vanishes at the
generic point of the exceptional divisor Dy of Y — Z, which is cut out by 39 = 0, and at
the generic point of the strict transform D, of the divisor {y,.; = 0} C Z under the
blow-up morphism Y — Z. Indeed, the divisors Dy and D, in Y map via f onto P"
and the generic fibres Dy, and D,y , of f|, are the hypersurfaces in (different) Py
given by

r

Z cj(xy, @)yt + (1) "y . xny,y, =0 and
j=1

T (1—1—%1‘[

respectively, see (6.4) and (6.1). Thus Dy, and D,;, are each isomorphic as k(P")-

n+1 m r
j=1

varieties to a subvariety of the hypersurface given by the vanishing of the n-th Fermat-
Pfister form of degree m

S () ()

ee{0,1}"

with j(e) = > ;27! as defined in [Sch21a, Equation (7)]. The vanishing of f*a along
i=0

the generic points of Dy and D, follows from [Sch21a, Corollary 4.3]. Since the generic
fibre of f is smooth (m is invertible in k), we conclude via [BO74] that

(6.5) () Ne =0€ H'(K(E), ")

for any subvariety £ C Y’ with 7(F) C Wy = Z*™8U{y, 1l = 0}, where [ € k[zo, . .., z,)
is any nontrivial homogeneous polynomial in zy, ..., z, as in the statement of the theo-
rem.

A computation with the Merkurjev pairing similar to [Sch19b, §3] or [Sch21b, Theorem
8.6] then shows Tor”™(Z, W) = m; we sketch the argument for convenience. For a
contradiction assume that there is a positive integer m’ < m with

m’ . (52 =z+m: C € CHO<Zk(Z))
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for some zero-cycle z whose support supp z lies in (Wz)kz) and some zero-cycle ( €
CHo(Zk(z)) that reflects the fact that we work with Z/m-torsion orders. We restrict
the above identity to the regular locus of Zjz) and pull this pack to Tfl(ZZ?‘Z)). The
localization sequence then yields

m/ . 57— = Z, +m - C/ - CH()(ka(Z))?

where §, = 7*04 is the point induced by the graph of 7 : Y’ — Z, 2’ is a zero-cycle with
supp 2’ C 771 (Wy)i(z) and (' € CHo(Y}(4)). Note that this used Z*"8 C Wy. We pair
the above zero-cycle via the Merkurjev pairing (see [Mer08, §2.4] or [Sch21b, §5]) with

the unramified class v from above. This yields
<m/ : 5Ta 7'*7> = 07

because ~y is m-torsion, hence pairs to zero with m - (’, and it restricts to zero on generic
points of subvarieties of 77*(W) by (6.5), hence pairs to zero with z’. Conversely, the

definition of the Merkurjev pairing directly implies that
0= {(m -6,,7") =m' -7y =m' -deg(r) -y € H"(k(Z), u2"),

as 0, € Yk/(Z) is the point associated to the graph I'; C Y’ x Z of 7. This contradicts
the fact that deg(7) is coprime to m, that 1 < m’ < m, and that ~ has order m. This
concludes the proof of the theorem. O

7. PROOF OF THE MAIN RESULTS

Let k£ be an algebraically closed field and let X C ]P’iv *1 be a smooth Fano hypersur-
face, i.e. a smooth hypersurface of degree d < N + 1. Then deg: CHy(X) — Z is an
isomorphism and so the torsion order Tor(X) of X is the torsion order Tor”(X, W) of
X relative to any closed zero-dimensional subset W C X, see Lemma 3.6 (d). The main
results of this paper, stated in the introduction, will follow from the following result.

Theorem 7.1. Let k be a field and let m > 2 be an integer invertible in k. Let n > 2,

r<2"—2, and let
“/n\ |n—1
< -
=25

be non-negative integers. Write N := n +r + s. Then the torsion order Tor(Xy) of a

very general Fano hypersurface Xy C ]Pfﬂv +

of degree d > m + n is divisible by m.
Remark 7.2. For s = 0, the result is proven in [Sch21a, Theorem 7.1].

Proof of Theorem 7.1. Note that the torsion order of any variety is divisible by the tor-
sion order of the base-change to any field extension. Moreover, the definition of very
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general (see Definition 2.4) is stable under extension of the base field. Up to replac-
ing k£ by a field extension, we can therefore assume that k is algebraically closed and
uncountable.

We fix positive integers n > 2 and r < 2" — 2. For a non-negative integer s as in the
theorem, we define inductively an integral degree d-hypersurface Z = Z, of dimension
N=n+r+s.

Step 1. Suppose there exists an integral degree d-hypersurface Z, C IP’Z”JFSH

given

by the vanishing of a homogeneous polynomial of the form

(7.1) f(s)—i—aé) T+1yr+1+ZZa y] € k[Toy . s Tny Yty oo oy Yridy 21y -+ - 2]
7j=1 =1

for some homogeneous polynomials

fO 7a0 ) 7:217 zy Ek[ '7'rn7217"~7zs]
such that

(1) £ +al € k[wo, ... @0, 21, .., 2] is an irreducible polynomial of degree d;

e ; for a non- negatlve integer e, then z§' | a; S) forall 1 <i <

m. We denote the maX1mal such e by e; ),

(3) Tor®™(Z,,W,) = m, where W, := {moaglyrﬂh(s) = 0} U Zsm& C Z, for some
homogeneous polynomial h*) € klxg, ..., 2, 21,. .., 2.

Assume that there exists some 1 < jo < r such that eg)

(2) for each j, if 5™ | a,,

> 1. Then we construct an
integral degree d-hypersurface Z;,; of the same form (7.1) satisfying the condition (1),
(2), and (3) as follows.

Consider k' = W an algebraic closure of the purely transcendental field extension
k(A) of k. Rewrite the equation (7.1) as

(fOS) + ar+1yr+1 + Z Z a, > ( ) + (Z)Oyjo

Jj#jo =1 i=1

We are now in the situation of Section 5. Note that condition (1) implies the assumption
(5.2). Let Z,1 be the integral degree d-hypersurface X’ xx K C P22 where X'
is as in Lemma 5.2 and K = k'(t). We choose an isomorphism k ~ K, which exists
because both fields are algebraically closed, have the same characteristic and have the
same uncountable transcendence degree over their prime fields. Thus we can view Z;
as a variety over k. We aim to check that Z, ., satisfies the assumptions above. Recall
from Lemma 5.2 that Z,,; C PPt 7572 is cut out by the homogeneous polynomial

72) (fos - 33 ) e +z 0y

J#jo i=1
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where al™, al(-szl) € k[zo, ..., Tn, 21, .., 2s11) are defined as in (5.6). Note this uses also

Lemma 5.2 (3). Hence, the defining equation of Z,, has the form (7.1) with
(s+1) (s)

s+1 s s+1 s . .
fé . é ), afn:l) = afqll, and a; ;" :=a;; for j# jo.
Since f*t and a5 do not contain any y;, condition (1) follows from Lemma 5.2 (4).

As az(’sfl) = al(-fj) for j # jo, condition (2) is clearly satisfied for j # jo and we note that
egsﬂ) = e§-s) for j # jo. For j = jo, condition (2) follows from Lemma 5.2 (2). Proposition
5.7 shows that TorZ/m(Zs+1, Wsi1) = m, where W = {xoaﬂlyrﬂh(s)zsﬂ =0} C Zsi1.
Note that the derivative of (7.2) with respect to y,;; is equal to ma,{ilyﬁjl; thus the
singular locus of Z,,, is contained in {affilyrﬂ =0} C Zs41. By definition, afffll) = affil
and so condition (3) is satisfied for h(+Y) = h(®)z ;.

Step 2. Consider the hypersurface Z, := Z, with defining equation ph + T ™ as
in Corollary 6.2, where h € k[xo, ..., x,| is an irreducible polynomial of degree d, e.g.

2l 4+ S z2t if p>0andp|d,
h = n =1

S ad otherwise,

i=0

where p is the characteristic of k. We will prove that Z; satisfies the condition (1), (2),
and (3) above.

Consider the following polynomials in k|xg, . .., z,]
fo(o) = ph + xg_deg(g)g, aéo) =0, affﬁl = (=1)"zl ™ w2y

ag)j):zo, forl<i<m-—land1<j<r,

(0) d—m—deg(c;)

Ay 7= T ci(z1,...,2y,), forl1<j<r,

where ¢ is defined in (6.1) and the ¢;’s are defined in (6.2). Then, by construction,

—m—-n 0 0 S m 0 7
ph—i_‘rg F = f(g ) +a(() ) +a7(“—|21yr+1 _'_Zzaz(,j) : yj S k‘[l’o, ey Ty Y100 7y7”+1]
7j=1 =1

is of the form (7.1). The polynomial féo) is irreducible because the polynomial h is
irreducible and p is a transcendental parameter over the prime field of k, which is al-

gebraically independent from w. Hence condition (1) holds. Condition (2) is clearly
(0)

satisfied as a;; = 0 for 1 <7 <m — 1. In particular, we see from the definition of afg?j

above that
(7.3) el = {

Corollary 6.2 shows that condition (3) holds as well, where we note that we can choose
h(®) = 1. This concludes Step 2.

d—m— deg(c»J |
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By Steps 1 and 2 above, we can apply the double cone construction (see Section 5) as
long as at least one of the e;’s defined in (2) is positive. In each step, we reduce one of

them by 1. Hence, the number of steps is equal to the sum

i o - {d —m — deg(cj)J
e = )
— m

This sum becomes maximal when r is maximal, i.e. r = 2" — 2. Then the sum reads

2" -2

Fr-E0) )

Let now X, be a very general hypersurface of degree d and dimension N over k. Up
to replacing k by a larger algebraically closed field (which does not affect the torsion
order by Lemma 3.6), we can by Lemma 2.5 assume that X, degenerates to Z,. By
choosing N general hyperplane sections through a closed point of Wy, we can assume
that there exists a closed subset W in the total space of the degeneration which has
relative dimension 0 and whose restriction to the special fibre Z, is contained in Wi.

Applying Lemma 3.8 to the degeneration with W as closed subset yields that
Tor?™(X4, Wy,) = m,

where Wx, := WNX,; C Xg is a closed non-empty zero-dimensional subset of X;. Thus,
Lemma 3.6 implies that m divides Tor(Xy), which finishes the proof of the theorem. [J

The following lemmas yield explicit estimates for the bound given in Theorem 7.1.

Lemma 7.3. Let n,m > 2 be positive integers. Then

(7.4) Q%J - 1) (21— 1) < Z( ) V_ZJ < {%J (21— 1),

B R GIE EE GBI
SEO S0
SEO ()

The estimates in (7.4) follow now from the observation

(-0 ="+ ) < L]

l\DI»—t
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for all 0 <[ < n together with the summation formula for binomial coefficients. O

We provide more explicit formulas for m = 2 and m = 3. These bounds are used in
Theorem 1.1 and Theorem 1.2.

Lemma 7.4. Let n be a positive integer. Then the following formulas hold

(7.5) i (7) VT_ZJ = (n—1)2"2— {gJ ,

=1

76 O ]l B

=1

where & depends on the remainder of n modulo 6 and is given by the following table.

n mod6|0|1[2] 3 [4]5

S HHAEINH
Proof. We check (7.5) by the following computation:

>O-5 03y ()
— \I 2 —~ 2 \! inl:(}dd l
e B0 (D407
1 =1
n—!l odd

- 3(2" 1) —n2n 22y (1 - (—1)”1)

1 1
= (n-12 = | 5],

We turn to (7.6) and prove first a combinatorial formula for a lacunary sum of binomial
coefficients, see e.g. [Rio68, Section 4, Problem 8, p.161]. Let £ be a primitive third root
of unity in C, then the following holds

5 0)-E e e

I=r (3) =0
= 9on + §—r<1 + g)n + §—2r(1 + 52)71
= 2" 4 (~1)"(E) + (-1
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Write n = 3a + b for integers a € Z>( and b € {0,1,2}. Then we get

SO0z (052 ()

n—I=1 (3)

A simple computation shows that

b (_1)71 2b+2 b+1 2b+1 b+2
RN S 2 2 =0
3 5 (€572 + ¢ 2870 4 26%47) = 6,

which proves (7.6) and thus the lemma. O

Proof of Theorem 1.1. If d = 4, then the statement follows from [Tot16] for N < 4 (see
also [Sch19b, Theorem 1.1]) and [PS23, Theorem 1.1] for N = 5, see also Example 4.6.
Let now d > 5 and N < dli612d be positive integers. If 3 < N < (d —2) + 272 — 2, then
the theorem follows from [Sch19b, Theorem 1.1], because we can then write N uniquely
as N = n + r for integers n,r > 1 satisfying 2 <n <d—-2and 2" 1 -2 <r <27 -2,
Hence we can assume that N > d—4+2%2. Letn=d—2,r=22—-2ands= N—n—r
be non-negative integers. We claim that

s < (d—3)24% — {%J .

Indeed, otherwise we get

2d
16

d—2 d+1
N:n+7’+s>d—4+2d2+(d—3)2d4—L Jz i

2

which yields a contradiction to the assumption N < %Qd. Thus, Theorem 7.1 implies by
Lemma 7.4 that Tor(Xy) is divisible by 2 for a very general degree d hypersurface Xy C
PN+ In particular, X, does not admit an integral decomposition of the diagonal. [

Proof of Theorem 1.2. Let d > 5 and 3 < N < d4i812d be integers. If 3 < N < (d — 3) +
243 — 2. then the theorem follows from [Sch2la, Theorem 7.1], because we can write
N = n + r for unique positive integers n, r satisfying 2 <n <d—-3and 2" ' -2 <r <
2" — 2. Hence we can assume that N > d — 542973 Let n=d — 3, r = 2973 — 2 and
s = N —n —r be non-negative integers. We claim that

< gzd—‘l _d=3
- 3 3

s + 0,
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where 0 is defined as in Lemma 7.4. (Note that n = d — 3.) Indeed, otherwise we get

d—>5 d—3 d+1 2d d+1
N = >d—342¢3 94— “od=d = "5 — "ol T 45 4> |——9¢
n4r+s + + 3 3 + 1 +3+ =T 7

which yields a contradiction to the assumption that N is an integer satisfying N < 424,
Thus, Theorem 7.1 implies by Lemma 7.4 that 3 | Tor(X,) for a very general degree d

hypersurface Xy C PY*!. In particular, X; does not admit an integral decomposition of

the diagonal. ([

Proof of Theorem 1.3. This follows from Theorem 7.1 together with the estimate in

Lemma 7.3. O
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